PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (29)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Spleen nodules: a potential hallmark of Visceral Leishmaniasis in young children 
BMC Infectious Diseases  2014;14(1):620.
Background
Visceral leishmaniasis (VL) is a severe disease caused by Leishmania infantum in the Mediterranean basin, and is associated with considerable morbidity and mortality. Infantile VL may begin suddenly, with high fever and vomiting, or insidiously, with irregular daily fever, anorexia, and marked splenomegaly. Delays in diagnosis of VL are common, highlighting the need for increased awareness of clinicians for VL in endemic European countries.
Case presentation
We report 4 cases of young children in northern Italy presenting with persistent fever of unknown origin and diagnosed with VL by serological and molecular methods. At the time of diagnosis, these patients showed an unusual echographic pattern characterized by multiple iso-hypoechoic nodules associated with splenomegaly.
Conclusion
We suggest that detection of spleen nodules represents a signature of VL in infants, thus helping to diagnose systemic Leishmania infantum infection in children.
doi:10.1186/s12879-014-0620-2
PMCID: PMC4270008  PMID: 25496484
Visceral leishmaniasis; Hemophagocytic lymphohistiocytosis; Abdominal ultrasonography
2.  Assessment of the effect of sphingosine kinase inhibitors on apoptosis,unfolded protein response and autophagy of T-cell acute lymphoblastic leukemia cells; indications for novel therapeutics 
Oncotarget  2014;5(17):7886-7901.
Sphingosine 1-phosphate (S1P) is a bioactive lipid that is formed by the phosphorylation of sphingosine and catalysed by sphingosine kinase 1 (SK1) or sphingosine kinase 2 (SK2). Sphingosine kinases play a fundamental role in many signaling pathways associated with cancer, suggesting that proteins belonging to this signaling network represent potential therapeutic targets. Over the last years, many improvements have been made in the treatment of T-cell acute lymphoblastic leukemia (T-ALL); however, novel and less toxic therapies are still needed, especially for relapsing and chemo-resistant patients. Here, we analyzed the therapeutic potential of SKi and ROMe, a sphingosine kinase 1 and 2 inhibitor and SK2-selective inhibitor, respectively. While SKi induced apoptosis, ROMe initiated an autophagic cell death in our in vitro cell models. SKi treatment induced an increase in SK1 protein levels in Molt-4 cells, whereas it activated the endoplasmic reticulum (ER) stress/unfolded protein response (UPR) pathway in Jurkat and CEM-R cells as protective mechanisms in a sub-population of T-ALL cells. Interestingly, we observed a synergistic effect of SKi with the classical chemotherapeutic drug vincristine. In addition, we reported that SKi affected signaling cascades implicated in survival, proliferation and stress response of cells. These findings indicate that SK1 or SK2 represent potential targets for treating T-ALL.
PMCID: PMC4202168  PMID: 25226616
T-cell acute lymphoblastic leukemia; sphingosine kinase inhibitors; apoptosis; autophagy; unfolded protein response
3.  Genomic profiling in Down syndrome acute lymphoblastic leukemia identifies histone gene deletions associated with altered methylation profiles 
Leukemia  2011;25(10):1555-1563.
Patients with Down syndrome (DS) and acute lymphoblastic leukemia (ALL) have distinct clinical and biological features. Whereas most DS-ALL cases lack the sentinel cytogenetic lesions that guide risk assignment in childhood ALL, JAK2 mutations and CRLF2 overexpression are highly enriched. To further characterize the unique biology of DS-ALL, we performed genome-wide profiling of 58 DS-ALL and 68 non-Down syndrome (NDS) ALL cases by DNA copy number, loss of heterozygosity, gene expression, and methylation analyses. We report a novel deletion within the 6p22 histone gene cluster as significantly more frequent in DS-ALL, occurring in 11 DS (22%) and only two NDS cases (3.1%) (Fisher’s exact p = 0.002). Homozygous deletions yielded significantly lower histone expression levels, and were associated with higher methylation levels, distinct spatial localization of methylated promoters, and enrichment of highly methylated genes for specific pathways and transcription factor binding motifs. Gene expression profiling demonstrated heterogeneity of DS-ALL cases overall, with supervised analysis defining a 45-transcript signature associated with CRLF2 overexpression. Further characterization of pathways associated with histone deletions may identify opportunities for novel targeted interventions.
doi:10.1038/leu.2011.128
PMCID: PMC4107887  PMID: 21647151
Down syndrome; acute lymphoblastic leukemia (ALL); histone; JAK2; CRLF2
4.  Atopic dermatitis phenotypes in childhood 
Background
Atopic dermatitis (AD) is a chronic inflammatory skin disease and can be the first step of the atopic march.
Objective
In this retrospective study, we analysed the immunological and clinical patterns of AD in a group of children affected by the disease since their first years of life, in order to evaluate if and how these patterns can change over time, and to identify biomarkers that can possibly correlate with the clinical phenotype.
Methods
We enrolled Caucasian children with diagnosis of AD performed by a specialist on the basis of Hanifin and Rajka’s criteria and with a first clinical and laboratory evaluation before 5 years of age. Patients were divided in 2 groups: IgE-associated AD (with or without allergic respiratory diseases) and non-IgE-associated AD.
Results
Among 184 patients enrolled in this study, at the beginning 30/184 were classified as having non-IgE-associated AD, but during follow-up, at the median age of 36 months, 15 patients became allergic. All 15 patients who switched from the non-IgE to the IgE-associated form had a significantly earlier onset of AD than those who did not switch. Dust mite sensitization seem to be the best biomarker (OR 2.86) to predict the appearance of allergic respiratory diseases.
Conclusion
IgE-associated AD is more frequent in childhood than non-IgE-associated AD. These two phenotypes are different in the age of onset and in the remission patterns. In the first years of life, it is important to distinguish the different phenotypes in order to evaluate possible allergic related conditions.
doi:10.1186/1824-7288-40-46
PMCID: PMC4063231  PMID: 24887188
Atopic dermatitis; Phenotypes; Allergy; Childhood; Atopic march
5.  Indoleamine 2,3-dioxygenase 1 (IDO1) activity in leukemia blasts correlates with poor outcome in childhood acute myeloid leukemia 
Oncotarget  2013;5(8):2052-2064.
Microenvironmental factors contribute to the immune dysfunction characterizing acute myeloid leukemia (AML). Indoleamine 2,3-dioxygenase 1 (IDO1) is an interferon (IFN)-γ-inducible enzyme that degrades tryptophan into kynurenine, which, in turn, inhibits effector T cells and promotes regulatory T-cell (Treg) differentiation. It is presently unknown whether childhood AML cells express IDO1 and whether IDO1 activity correlates with patient outcome.
We investigated IDO1 expression and function in 37 children with newly diagnosed AML other than acute promyelocytic leukemia. Blast cells were cultured with exogenous IFN-γ for 24 hours, followed by the measurement of kynurenine production and tryptophan consumption. No constitutive expression of IDO1 protein was detected in blast cells from the 37 AML samples herein tested. Conversely, 19 out of 37 (51%) AML samples up-regulated functional IDO1 protein in response to IFN-γ. The inability to express IDO1 by the remaining 18 AML samples was not apparently due to a defective IFN-γ signaling circuitry, as suggested by the measurement of signal transducer and activator of transcription 3 (STAT3) phosphorylation. Co-immunoprecipitation assays indicated the occurrence of physical interactions between STAT3 and IDO1 in AML blasts. In line with this finding, STAT3 inhibitors abrogated IDO1 function in AML blasts. Interestingly, levels of IFN-γ were significantly higher in the bone marrow fluid of IDO-expressing compared with IDO-nonexpressing AMLs. In mixed tumor lymphocyte cultures (MTLC), IDO-expressing AML blasts blunted the ability of allogeneic naïve T cells to produce IFN-γ and promoted Treg differentiation. From a clinical perspective, the 8-year event-free survival was significantly worse in IDO-expressing children (16.4%, SE 9.8) as compared with IDO-nonexpressing ones (48.0%, SE 12.1; p=0.035).
These data indicate that IDO1 expression by leukemia blasts negatively affects the prognosis of childhood AML. Moreover, they speak in favor of the hypothesis that IDO can be targeted, in adjunct to current chemotherapy approaches, to improve the clinical outcome of children with AML.
PMCID: PMC4039144  PMID: 24903009
Acute myeloid leukemia; IDO1; immune escape; regulatory T cells
6.  Molecular Imaging of Neuroblastoma Progression in TH-MYCN Transgenic Mice 
Purpose
TH-MYCN transgenic mice represent a valuable preclinical model of neuroblastoma. Current methods to study tumor progression in these mice are inaccurate or invasive, limiting the potential of this murine model. The aim of our study was to assess the potential of small animal positron emission tomography (SA-PET) to study neuroblastoma progression in TH-MYCN mice.
Procedure
Serial SA-PET scans using the tracer 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) have been performed in TH-MYCN mice. Image analysis of tumor progression has been compared with ex vivo evaluation of tumor volumes and histological features.
Results
[18F]FDG-SA-PET allowed to detect early staged tumors in almost 100 % of TH-MYCN mice positive for disease. Image analysis of tumor evolution reflected the modifications of the tumor volume, histological features, and malignancy during disease progression. Image analysis of TH-MYCN mice undergoing chemotherapy treatment against neuroblastoma provided information on drug-induced alterations in tumor metabolic activity.
Conclusions
These data show for the first time that [18F]FDG-SA-PET is a useful tool to study neuroblastoma presence and progression in TH-MYCN transgenic mice.
doi:10.1007/s11307-012-0576-9
PMCID: PMC3594000  PMID: 22777578
Neuroblastoma; Small animal PET; [18F]FDG; TH-MYCN mice
7.  MYCN is a novel oncogenic target in pediatric T-cell Acute Lymphoblastic Leukemia 
Oncotarget  2013;5(1):120-130.
MYCN is an oncogene frequently overexpressed in pediatric solid tumors whereas few evidences suggest his involvement in the pathogenesis of haematologic malignancies. Here we show that MYCN is overexpressed in a relevant proportion (40 to 50%) of adult and pediatric T-cell acute lymphoblastic leukemias (T-ALL). Focusing on pediatric T-ALL, MYCN-expressing samples were found almost exclusively in the TAL1-positive subgroup. Moreover, TAL1 knockdown in T-ALL cell lines resulted in a reduction of MYCN expression, and TAL1 directly binds to MYCN promoter region, suggesting that TAL1 pathway activation could sustain the up-regulation of MYCN. The role of MYCN in T-ALL was investigated by peptide nucleic acid (PNA-MYCN)-mediated transcriptional silencing of MYCN and by siRNAs. MYCN knockdown in T-ALL cell lines resulted in a reduction of cell viability, up to 50%, while no effect was elicited with a mismatch PNA. The inhibitory effect of PNA-MYCN on cell viability was due to a significant increase in apoptosis. PNA-MYCN treatment in pediatric T-ALL samples reduced cell viability of leukemic cells from patients with high MYCN expression, while no effect was obtained in MYCN-negative blast cells. These results showed that MYCN is frequently overexpressed in pediatric T-ALL and suggested his role as a candidate for molecularly-directed therapies.
PMCID: PMC3960194  PMID: 24334727
pediatric T-ALL; MYCN; peptide nucleic acid; TAL1; TGF-β inhibitors
8.  Acute Promyelocytic Leukemia (APL): Comparison Between Children and Adults 
The outcome of adults and children with Acute Promyelocytic Leukemia (APL) has dramatically changed since the introduction of all trans retinoic acid (ATRA) therapy. Based on the results of several multicenter trials, the current recommendations for the treatment of patients with APL include ATRA and anthracycline-based chemotherapy for the remission induction and consolidation, and ATRA combined with low-dose chemotherapy for maintenance. This has improved the prognosis of APL by increasing the complete remission (CR) rate, actually > 90%, decreasing the induction deaths and by reducing the relapse rate, leading to cure rates nowadays exceeding 80% considering both adults and children.1–9 More recently the combination of ATRA and arsenic trioxide (ATO) as induction and consolidation therapy has been shown to be at least not inferior and possibly superior to ATRA plus chemotherapy in adult patients with APL conventionally defined as non-high risk (Sanz score).10
Childhood APL has customarily been treated on adult protocols. Data from several trials have shown that the overall outcome in pediatric APL appears similar to that reported for the adult population; however, some clinical and therapeutic aspects differ in the two cohorts which require some important considerations and treatment adjustments.
doi:10.4084/MJHID.2014.032
PMCID: PMC4010611  PMID: 24804005
9.  DUAL INHIBITION OF CLASS IA PHOSPHATIDYLINOSITOL 3-KINASE AND mTOR AS A NEW THERAPEUTIC OPTION FOR T-CELL ACUTE LYMPHOBLASTIC LEUKEMIA 
Cancer research  2009;69(8):10.1158/0008-5472.CAN-08-4884.
Recent investigations have documented that constitutively activated phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian Target of Rapamycin (mTOR) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL) where it strongly influences growth and survival. These findings lend compelling weight for the application of PI3K/Akt/mTOR inhibitors in T-ALL. However, our knowledge of PI3K/Akt/mTOR signaling in T-ALL is limited and it is not clear whether it could be an effective target for innovative therapeutic strategies. Here, we have analyzed the therapeutic potential of the dual PI3K/mTOR inhibitor, PI-103, a small synthetic molecule of the pyridofuropyrimidine class, on both T-ALL cell lines and patient samples, which displayed constitutive activation of PI3K/Akt/mTOR signaling. PI-103 inhibited the growth of T-ALL cells, including 170-kDa glycoprotein overexpressing cells. PI-103 cytotoxicity was independent of p53 gene status. PI-103 was more potent than inhibitors which are selective only for PI3K (Wortmannin, LY294002) or for mTOR (rapamycin). PI-103 induced G0/G1 phase cell cycle arrest and apoptosis which was characterized by activation of caspase-3 and -9. PI-103 caused Akt dephosphorylation, accompanied by dephosphorylation of the Akt downstream target, glycogen synthase kinase-3β. Also mTOR downstream targets were dephosphorylated in response to PI-103, including p70S6 kinase, ribosomal S6 protein, and 4E-BP1. PI-103 strongly synergized with vincristine. These findings indicate that multi-targeted therapy towards PI3K and mTOR, alone or with existing drugs, may serve as an efficient treatment towards T-ALL cells which require upregulation of PI3K/Akt/mTOR signaling for their survival and growth.
doi:10.1158/0008-5472.CAN-08-4884
PMCID: PMC3836286  PMID: 19351820
PI3K/Akt/mTOR signaling; apoptosis; caspases; drug resistance; combination therapy
11.  DHH-RHEBL1 fusion transcript: a novel recurrent feature in the new landscape of pediatric CBFA2T3-GLIS2-positive acute myeloid leukemia 
Oncotarget  2013;4(10):1712-1720.
Childhood Acute Myeloid Leukemia (AML) is a clinically and genetically heterogeneous malignant disease. Despite improvements in outcome over the past decades, the current survival rate still is approximately 60-70%. Cytogenetic, recurrent genetic abnormalities and early response to induction treatment are the main factors predicting clinical outcome. While the majority of children carry recurrent chromosomal translocations, 20% of patients do not show any recognizable cytogenetic alteration and are defined to have cytogenetically normal AML (CN-AML). This subset of patients is characterized by a significant heterogeneity in clinical outcome, which is influenced by factors only recently started to be identified. In this respect, genome-wide analyses have been used with the aim of defining the full array of genetic lesions in CN-AML. Recently, through whole-transcriptome massively parallel sequencing of seven cases of pediatric CN-AML, we identified a novel recurrent CBFA2T3-GLIS2 fusion, predicting poorer outcome. However, since the expression of CBFA2T3-GLIS2 fusion in mice is not sufficient for leukemogenesis, we speculated that further unknown abnormalities could contribute to both cancer transformation and response to treatment. Thus, we analyzed, by whole-transcriptome sequencing, 4 CBFA2T3-GLIS2-positive patients, as well as 4 CN-AML patients. We identified a new fusion transcript in the CBFA2T3-GLIS2 -positive patients, involving Desert Hedgehog (DHH), a member of Hedgehog family, and Ras Homologue Enrich in Brain Like 1 (RHEBL1), a gene coding for a small GTPase of the Ras family. Through the screening of a validation cohort of 55 additional pediatric AML patients, we globally detected DHH-RHEBL1 fusion in 8 out of 20 (40%) CBFA2T3-GLIS2- rearranged patients. Gene expression analysis performed on RNA-seq data revealed that DHH-RHEBL1 –positive patients exhibited a specific signature. These 8 patients had an 8-year overall survival worse than that of the remaining 12 CBFA2T3-GLIS2- rearranged patients not harboring DHH-RHEBL1 fusion (25% vs 55%, respectively, P =0.1). Taken together, these findings are unprecedented and indicate that the DHH-RHEBL1 fusion transcript is a novel recurrent feature in the changing landscape of CBFA2T3-GLIS2 -positive childhood AML. Moreover, it could be instrumental in the identification of a subgroup of CBFA2T3-GLIS2 -positive patients with a very poor outcome.
PMCID: PMC3858557  PMID: 24127550
pediatric acute myeloid leukemia; cytogenetically normal acute myeloid leukemia; whole-transcriptome massively parallel sequencing; CBFA2T3-GLIS2 fusion transcript; DHH-RHEBL1 fusion transcript
12.  Ewing Sarcoma of the Bone in Children under 6 Years of Age 
PLoS ONE  2013;8(1):e53223.
Background
Ewing Sarcoma Family Tumours (ESFT) are rare in early childhood. The aim of this study was to report the clinical characteristics and outcome of children under 6 years of age affected by ESFT of the bone in Italy.
Methods
The records of all the children diagnosed with osseous ESFT in centres members of the Associazione Italiana di Ematologia ed Oncologia Pediatrica (AIEOP) from 1990 to 2008 were reviewed. The Kaplan–Meier method was used for estimating overall and progression-free survival (OS, PFS) curves; multivariate analyses were performed using Cox proportional hazards regression model.
Results
This study includes 62 patients. An axial primary localization was present in 66% of patients, with the primary site in the chest wall in 34%. Fourteen (23%) patients presented metastatic disease. The 5-year OS and PFS were 73% (95% confidence interval, CI, 58–83%) and 72% (95% CI 57–83%) for patients with localized disease and 38% (95% CI 17–60%) and 21% (95% CI 5–45%) for patients with metastatic disease. Metastatic spread, skull/pelvis/spine primary localization, progression during treatment and no surgery predicted worse survival (P<0.01), while patients treated in the last decade had better survival (P  = 0.002). In fact, the 5-year OS and PFS for patients diagnosed in the period 2000–2008 were 89% (95% CI 71–96%) and 86% (95% CI 66–94%), respectively.
Conclusion
The axial localization is the most common site of ESFT in pre-scholar children. Patients treated in the most recent period have an excellent outcome.
doi:10.1371/journal.pone.0053223
PMCID: PMC3561359  PMID: 23382839
13.  Citrus Allergy from Pollen to Clinical Symptoms 
PLoS ONE  2013;8(1):e53680.
Allergy to citrus fruits is often associated with pollinosis and sensitization to other plants due to a phenomenon of cross-reactivity. The aims of the present study were to highlight the cross-reactivity among citrus and the major allergenic pollens/fruits, throughout clinical and molecular investigations, and to evaluate the sensitization frequency to citrus fruits in a population of children and adults with pollinosis. We found a relevant percentage of sensitisation (39%) to citrus fruits in the patients recruited and in all of them the IgE-mediated mechanism has been confirmed by the positive response to the prick-to-prick test. RT-PCR experiments showed the expression of Cit s 1, Cit s 3 and a profilin isoform, already described in apple, also in Citrus clementine pollen. Data of multiple sequence alignments demonstrated that Citrus allergens shared high percentage identity values with other clinically relevant species (i.e. Triticum aestivum, Malus domestica), confirming the possible cross-allergenicity citrus/grasses and citrus/apple. Finally, a novelty of the present work has been the expression of two phospholipaseA2 isoforms (PLA2 α and β) in Citrus as well as in Triticum pollens; being PLA2 able to generate pro-inflammatory factors, this enzyme could participate in the activation of the allergenic inflammatory cascade.
doi:10.1371/journal.pone.0053680
PMCID: PMC3537725  PMID: 23308273
14.  Harnessing the PI3K/Akt/mTOR pathway in T-cell acute lymphoblastic leukemia: Eliminating activity by targeting at different levels 
Oncotarget  2012;3(8):811-823.
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignant hematological disorder arising in the thymus from T-cell progenitors. T-ALL mainly affects children and young adults, and remains fatal in 20% of adolescents and 50% of adults, despite progress in polychemotherapy protocols. Therefore, innovative targeted therapies are desperately needed for patients with a dismal prognosis. Aberrant activation of PI3K/Akt/mTOR signaling is a common event in T-ALL patients and portends a poor prognosis. Preclinical studies have highlighted that modulators of PI3K/Akt/mTOR signaling could have a therapeutic relevance in T-ALL. However, the best strategy for inhibiting this highly complex signal transduction pathway is still unclear, as the pharmaceutical companies have disclosed an impressive array of small molecules targeting this signaling network at different levels. Here, we demonstrate that a dual PI3K/PDK1 inhibitor, NVP-BAG956, displayed the most powerful cytotoxic effects against T-ALL cell lines and primary patients samples, when compared with a pan class I PI3K inhibitor (GDC-0941), an allosteric Akt inhibitor (MK-2206), an mTORC1 allosteric inhibitor (RAD-001), or an ATP-competitive mTORC1/mTORC2 inhibitor (KU-63794). Moreover, we also document that combinations of some of the aforementioned drugs strongly synergized against T-ALL cells at concentrations well below their respective IC50. This observation indicates that vertical inhibition at different levels of the PI3K/Akt/mTOR network could be considered as a future innovative strategy for treating T-ALL patients.
PMCID: PMC3478458  PMID: 22885370
acute leukemia; targeted therapy; signal transduction modulators; PI3K/PDK1; vertical inhibition
15.  Unbalance of intestinal microbiota in atopic children 
BMC Microbiology  2012;12:95.
Background
Playing a strategic role in the host immune function, the intestinal microbiota has been recently hypothesized to be involved in the etiology of atopy. In order to investigate the gastrointestinal microbial ecology of atopic disease, here we performed a pilot comparative molecular analysis of the faecal microbiota in atopic children and healthy controls.
Results
Nineteen atopic children and 12 healthy controls aged 4–14 years were enrolled. Stools were collected and the faecal microbiota was characterized by means of the already developed phylogenetic microarray platform, HTF-Microbi.Array, and quantitative PCR. The intestinal microbiota of atopic children showed a significant depletion in members of the Clostridium cluster IV, Faecalibacterium prausnitzii, Akkermansia muciniphila and a corresponding increase of the relative abundance of Enterobacteriaceae.
Conclusion
Depleted in key immunomodulatory symbionts, the atopy-associated microbiota can represent an inflammogenic microbial consortium which can contribute to the severity of the disease. Our data open the way to the therapeutic manipulation of the intestinal microbiota in the treatment of atopy by means of pharmaceutical probiotics.
doi:10.1186/1471-2180-12-95
PMCID: PMC3404014  PMID: 22672413
16.  Atopic dermatitis in adolescence 
Dermatology Reports  2011;4(1):e1.
Atopic dermatitis (AD) is a chronic inflammatory skin disorder that typically occurs during childhood especially in the first year of life, with a variable frequency from 10% to 30%. Recent studies have shown that in Europe among 10–20% of children with AD suffer from this disorder also in adolescence. AD is a chronic inflammatory skin disease with a typical onset in the first years of life and with a 10–30% prevalence among young children. AD prevalence in adolescence has been estimated around 5–15% in European countries. AD persists from childhood through adolescence in around 40% of cases and some risk factors have been identified: female sex, sensitization to inhalant and food allergens, allergic asthma and/or rhinoconjunctivitis, the practice of certain jobs. During adolescence, AD mainly appears on the face and neck, often associated with overinfection by Malassezia, and on the palms and soles. AD persistence during adolescence is correlated with psychological diseases such as anxiety; moreover, adolescents affected by AD might have problems in the relationship with their peers. Stress and the psychological problems represent a serious burden for adolescents with AD and cause a significant worsening of the patients' quality of life (QoL). The pharmacological treatment is similar to other age groups. Educational and psychological approaches should be considered in the most severe cases.
doi:10.4081/dr.2012.e1
PMCID: PMC4212666  PMID: 25386309
atopic dermatitis; adolescence; quality of life.
17.  Negative pressure treatment for necrotizing fasciitis after chemotherapy 
Pediatric Reports  2011;3(4):e33.
We describe 2 cases of children with malignant disease who developed severe mucositis with perineal necrotizing fasciitis during severe neutropenia after chemotherapy. Treatment with topical negative pressure therapy with silver foam dressing, together with large spectrum antibiotics, resolved the problem with complete closure of the wound after 30 and 36 days of treatment, respectively.
doi:10.4081/pr.2011.e33
PMCID: PMC3283201  PMID: 22355518
negative pressure treatment; necrotizing fasciitis; chemotherapy; pediatric.
18.  End point prick test: could this new test be used to predict the outcome of oral food challenge in children with cow's milk allergy? 
Background
Cow's milk allergy (CMA) is the most frequent food allergy in childhood; the trend of CMA is often characterized by a progressive improvement to achieve tolerance in the first 4 to 5 years of life.
It has been observed that specific IgE (sIgE) towards cow's milk proteins decrease when the age increases.
Although food allergy can be easily diagnosed, it is difficult to predict the outcome of the oral food challenge (OFC), that remains the gold standard in the diagnosis of food allergy, by allergometric tests.
Methods
We considered 44 children with CMA diagnosed through OFC who returned to our Allergy and Immunology Pediatric Department between January to December 2010 to evaluate the persistence of allergy or the achievement of tolerance.
On the basis of the history, we performed both allergometric skin tests and OFC in children that were still following a milk-free diet, whereas only allergometric skin tests those that had already undergone spontaneous introduction of milk protein at home without presenting symptoms.
Objective
The aim of this study was to investigate the relationship between the persistence of CMA or the acquisition of tolerance and the results of the end point prick test (EPT).
Results and Discussion
The OFC with cow's milk was performed on 30 children, 4 children were excluded because of a history of severe reactions to cow's milk, and 10 because they had spontaneously already taken milk food derivates at home without problems. 16/30 (53%) children showed clinical reactions and the challenge was stopped, 14/30 (47%) did not have any reaction.
Comparing the mean wheal diameter of every EPT's dilution between the group of allergic children and the tolerant ones, we obtained a significant difference (p < 0.05) for the first 4 dilutions.
We have also calculated sensitivity (SE), specificity (SP), the positive predictive value (PPV) and the negative predictive value (NPV) for each EPT dilution.
Conclusions
EPT is a safe and cheap test, easy to be executed and that could provide good prediction of the outcome of OFC; so it might be used to avoid OFC-induced anaphylaxis in children affected by CMA. It can also help avoiding dietetic restrictions in tolerant children who show sensitization towards cow's milk proteins.
doi:10.1186/1824-7288-37-52
PMCID: PMC3220633  PMID: 22053846
Cow's milk proteins allergy; end point prick test; food oral challenge; tolerance
19.  Foreign children with cancer in Italy 
Background
There has been a noticeable annual increase in the number of children coming to Italy for medical treatment, just like it has happened in the rest of the European Union. In Italy, the assistance to children suffering from cancer is assured by the current network of 54 centres members of the Italian Association of Paediatric Haematology and Oncology (AIEOP), which has kept records of all demographic and clinical data in the database of Mod.1.01 Registry since 1989.
Methods
We used the information stored in the already mentioned database to assess the impact of immigration of foreign children with cancer on centres' activity, with the scope of drawing a map of the assistance to these cases.
Results
Out of 14,738 cases recorded by all centres in the period from 1999 to 2008, 92.2% were born and resident in Italy, 4.1% (608) were born abroad and living abroad and 3.7% (538) were born abroad and living in Italy. Foreign children cases have increased over the years from 2.5% in 1999 to. 8.1% in 2008.
Most immigrant children came from Europe (65.7%), whereas patients who came from America, Asia and Oceania amounted to 13.2%, 10.1%, 0.2%, respectively. The immigrant survival rate was lower compared to that of children who were born in Italy. This is especially true for acute lymphoblastic leukaemia patients entered an AIEOP protocol, who showed a 10-years survival rate of 71.0% vs. 80.7% (p < 0.001) for immigrants and patients born in Italy, respectively.
Conclusions
Children and adolescents are an increasingly important part of the immigration phenomenon, which occurs in many parts of the world. In Italy the vast majority of children affected by malignancies are treated in AIEOP centres. Since immigrant children are predominantly treated in northern Italy, these centres have developed a special expertise in treating immigrant patients, which is certainly very useful for the entire AIEOP network.
doi:10.1186/1824-7288-37-44
PMCID: PMC3189490  PMID: 21923939
21.  HLA-mismatched hematopoietic stem cell tranplantation for pediatric solid tumors 
Pediatric Reports  2011;3(Suppl 2):e12.
Even if the overall survival of children with cancer is significantly improved over these decades, the cure rate of high-risk pediatric solid tumors such as neuroblastoma, Ewing's sarcoma family tumors or rhabdomiosarcoma remain challenging. Autologous hematopoietic stem cell transplantation (HSCT) allows chemotherapy dose intensification beyond marrow tolerance and has become a fundamental tool in the multimodal therapeutical approach of these patients. Anyway this procedure does not allow to these children an event-free survival approaching more than 50% at 5 years. New concepts of allogeneic HSCT and in particular HLA-mismatched HSCT for high risk solid tumors do not rely on escalation of chemotherapy intensity and tumor load reduction but rather on a graft-versus-tumor effect. We here report an experimental study design of HLA-mismatched HSCT for the treatment of pediatric solid tumors and the inherent preliminary results.
doi:10.4081/pr.2011.s2.e12
PMCID: PMC3206527  PMID: 22053274
HLA-mismatched hematopoietic stem cell tranplantation; childhood; solid tumors.
22.  Pooled Genome-Wide Analysis to Identify Novel Risk Loci for Pediatric Allergic Asthma 
PLoS ONE  2011;6(2):e16912.
Background
Genome-wide association studies of pooled DNA samples were shown to be a valuable tool to identify candidate SNPs associated to a phenotype. No such study was up to now applied to childhood allergic asthma, even if the very high complexity of asthma genetics is an appropriate field to explore the potential of pooled GWAS approach.
Methodology/Principal Findings
We performed a pooled GWAS and individual genotyping in 269 children with allergic respiratory diseases comparing allergic children with and without asthma. We used a modular approach to identify the most significant loci associated with asthma by combining silhouette statistics and physical distance method with cluster-adapted thresholding. We found 97% concordance between pooled GWAS and individual genotyping, with 36 out of 37 top-scoring SNPs significant at individual genotyping level. The most significant SNP is located inside the coding sequence of C5, an already identified asthma susceptibility gene, while the other loci regulate functions that are relevant to bronchial physiopathology, as immune- or inflammation-mediated mechanisms and airway smooth muscle contraction. Integration with gene expression data showed that almost half of the putative susceptibility genes are differentially expressed in experimental asthma mouse models.
Conclusion/Significance
Combined silhouette statistics and cluster-adapted physical distance threshold analysis of pooled GWAS data is an efficient method to identify candidate SNP associated to asthma development in an allergic pediatric population.
doi:10.1371/journal.pone.0016912
PMCID: PMC3040188  PMID: 21359210
23.  The Role of HDACs Inhibitors in Childhood and Adolescence Acute Leukemias 
Acute leukemia is the most common type of childhood and adolescence cancer, characterized by clonal proliferation of variably differentiated myeloid or lymphoid precursors. Recent insights into the molecular pathogenesis of leukemia have shown that epigenetic modifications, such as deacetylation of histones and DNA methylation, play crucial roles in leukemogenesis, by transcriptional silencing of critical genes. Histone deacetylases (HDACs) are potential targets in the treatment of leukaemia, and, as a consequence, inhibitors of HDACs (HDIs) are being studied for therapeutic purposes. HDIs promote or enhance several different anticancer mechanisms, such as apoptosis, cell cycle arrest, and cellular differentiation and, therefore, are in evidence as promising treatment for children and adolescents with acute leukemia, in monotherapy or in association with other anticancer drugs. Here we review the main preclinical and clinical studies regarding the use of HDIs in treating childhood and adolescence leukemia.
doi:10.1155/2011/148046
PMCID: PMC3026992  PMID: 21318168
24.  dMyc Functions Downstream of Yorkie to Promote the Supercompetitive Behavior of Hippo Pathway Mutant Cells 
PLoS Genetics  2010;6(9):e1001140.
Genetic analyses in Drosophila epithelia have suggested that the phenomenon of “cell competition” could participate in organ homeostasis. It has been speculated that competition between different cell populations within a growing organ might play a role as either tumor promoter or tumor suppressor, depending on the cellular context. The evolutionarily conserved Hippo (Hpo) signaling pathway regulates organ size and prevents hyperplastic disease from flies to humans by restricting the activity of the transcriptional cofactor Yorkie (yki). Recent data indicate also that mutations in several Hpo pathway members provide cells with a competitive advantage by unknown mechanisms. Here we provide insight into the mechanism by which the Hpo pathway is linked to cell competition, by identifying dMyc as a target gene of the Hpo pathway, transcriptionally upregulated by the activity of Yki with different binding partners. We show that the cell-autonomous upregulation of dMyc is required for the supercompetitive behavior of Yki-expressing cells and Hpo pathway mutant cells, whereas the relative levels of dMyc between Hpo pathway mutant cells and wild-type neighboring cells are critical for determining whether cell competition promotes a tumor-suppressing or tumor-inducing behavior. All together, these data provide a paradigmatic example of cooperation between tumor suppressor genes and oncogenes in tumorigenesis and suggest a dual role for cell competition during tumor progression depending on the output of the genetic interactions occurring between confronted cells.
Author Summary
One of the major challenges of developmental biology and cancer research is to get a better understanding of how different signals regulate proper organ growth and prevent tumor formation. Even though there is a strong correlation between tumor progression and Myc family misexpression or Hippo signaling pathway malfunction, the relationship between these organ growth regulators remains unclear. Here, we demonstrate that the Hippo signaling pathway controls the transcription of Drosophila dmyc. Furthermore, we show that the misregulated expression of dMyc in Hippo mutant cells elicits their proliferative expansion at the expense of normal surrounding cells. These findings reveal a molecular mechanism of cooperation between oncogenes and tumor suppressor genes that favors both tumor progression and wild-type tissue elimination. Additionally, our findings indicate a dual role for cell competition during the tumour progression depending on the cellular context.
doi:10.1371/journal.pgen.1001140
PMCID: PMC2944792  PMID: 20885789
25.  REARRANGEMENT OF CRLF2 IN B-PROGENITOR AND DOWN SYNDROME ASSOCIATED ACUTE LYMPHOBLASTIC LEUKEMIA 
Nature genetics  2009;41(11):1243-1246.
SUMMARY
Aneuploidy and translocations are hallmarks of B-progenitor acute lymphoblastic leukemia (ALL), but many patients lack a recurring chromosomal alteration. Here we report a recurring interstitial deletion of the pseudoautosomal region 1 of chromosomes X and Y in B-progenitor ALL that juxtaposes the first, non-coding exon of P2RY8 to the coding region of CRLF2 (which encodes cytokine receptor like factor 2, or thymic stromal lymphopoietin receptor). The P2RY8-CRLF2 fusion was identified in 7% of B-progenitor ALL cases, and was identified in over 50% of ALL cases arising in patients with Down syndrome (53% of 75 cases). CRLF2 alteration was associated with the presence of activating JAK mutations, and expression of P2RY8-CRLF2 together with JAK2 mutants resulted in constitutive Jak-Stat activation and cytokine-independent growth of Ba/F3-IL7R cells, indicating that these two genetic lesions together contribute to leukemogenesis in B-progenitor ALL.
doi:10.1038/ng.469
PMCID: PMC2783810  PMID: 19838194

Results 1-25 (29)