PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (79)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  Genome Sequence of the Neurotoxigenic Clostridium butyricum Strain 5521 
Genome Announcements  2014;2(3):e00632-14.
Clostridium strains from six phylogenetic groups, C. botulinum groups I to IV, C. baratii, and C. butyricum, display the capacity to produce botulinum neurotoxin. Here, we present the genome sequence of a C. butyricum isolate, the neurotoxigenic strain 5521, which encodes the type E botulinum neurotoxin.
doi:10.1128/genomeA.00632-14
PMCID: PMC4073117  PMID: 24970833
2.  Maintenance of essential amino acid synthesis pathways in the Blattabacterium cuenoti symbiont of a wood-feeding cockroach 
Biology Letters  2013;9(3):20121153.
In addition to harbouring intestinal symbionts, some animal species also possess intracellular symbiotic microbes. The relative contributions of gut-resident and intracellular symbionts to host metabolism, and how they coevolve are not well understood. Cockroaches and the termite Mastotermes darwiniensis present a unique opportunity to examine the evolution of spatially separated symbionts, as they harbour gut symbionts and the intracellular symbiont Blattabacterium cuenoti. The genomes of B. cuenoti from M. darwiniensis and the social wood-feeding cockroach Cryptocercus punctulatus are each missing most of the pathways for the synthesis of essential amino acids found in the genomes of relatives from non-wood-feeding hosts. Hypotheses to explain this pathway degradation include: (i) feeding on microbes present in rotting wood by ancestral hosts; (ii) the evolution of high-fidelity transfer of gut microbes via social behaviour. To test these hypotheses, we sequenced the B. cuenoti genome of a third wood-feeding species, the phylogenetically distant and non-social Panesthia angustipennis. We show that host wood-feeding does not necessarily lead to degradation of essential amino acid synthesis pathways in B. cuenoti, and argue that ancestral high-fidelity transfer of gut microbes best explains their loss in strains from M. darwiniensis and C. punctulatus.
doi:10.1098/rsbl.2012.1153
PMCID: PMC3645023  PMID: 23515978
mutualism; termite; genome degradation
3.  Life in the dark: metagenomic evidence that a microbial slime community is driven by inorganic nitrogen metabolism 
The ISME Journal  2013;7(6):1227-1236.
Beneath Australia's large, dry Nullarbor Plain lies an extensive underwater cave system, where dense microbial communities known as ‘slime curtains' are found. These communities exist in isolation from photosynthetically derived carbon and are presumed to be chemoautotrophic. Earlier work found high levels of nitrite and nitrate in the cave waters and a high relative abundance of Nitrospirae in bacterial 16S rRNA clone libraries. This suggested that these communities may be supported by nitrite oxidation, however, details of the inorganic nitrogen cycling in these communities remained unclear. Here we report analysis of 16S rRNA amplicon and metagenomic sequence data from the Weebubbie cave slime curtain community. The microbial community is comprised of a diverse assortment of bacterial and archaeal genera, including an abundant population of Thaumarchaeota. Sufficient thaumarchaeotal sequence was recovered to enable a partial genome sequence to be assembled, which showed considerable synteny with the corresponding regions in the genome of the autotrophic ammonia oxidiser Nitrosopumilus maritimus SCM1. This partial genome sequence, contained regions with high sequence identity to the ammonia mono-oxygenase operon and carbon fixing 3-hydroxypropionate/4-hydroxybutyrate cycle genes of N. maritimus SCM1. Additionally, the community, as a whole, included genes encoding key enzymes for inorganic nitrogen transformations, including nitrification and denitrification. We propose that the Weebubbie slime curtain community represents a distinctive microbial ecosystem, in which primary productivity is due to the combined activity of archaeal ammonia-oxidisers and bacterial nitrite oxidisers.
doi:10.1038/ismej.2013.14
PMCID: PMC3660674  PMID: 23426011
ammonia oxidising archaea (AOA); chemolithotrophy; metagenomics; microbial community; nitrogen cycling; Nullarbor caves
4.  pA506, a Conjugative Plasmid of the Plant Epiphyte Pseudomonas fluorescens A506 
Applied and Environmental Microbiology  2013;79(17):5272-5282.
Conjugative plasmids are known to facilitate the acquisition and dispersal of genes contributing to the fitness of Pseudomonas spp. Here, we report the characterization of pA506, the 57-kb conjugative plasmid of Pseudomonas fluorescens A506, a plant epiphyte used in the United States for the biological control of fire blight disease of pear and apple. Twenty-nine of the 67 open reading frames (ORFs) of pA506 have putative functions in conjugation, including a type IV secretion system related to that of MOBP6 family plasmids and a gene cluster for type IV pili. We demonstrate that pA506 is self-transmissible via conjugation between A506 and strains of Pseudomonas spp. or the Enterobacteriaceae. The origin of vegetative replication (oriV) of pA506 is typical of those in pPT23A family plasmids, which are present in many pathovars of Pseudomonas syringae, but pA506 lacks repA, a defining locus for pPT23A plasmids, and has a novel partitioning region. We selected a plasmid-cured derivative of A506 and compared it to the wild type to identify plasmid-encoded phenotypes. pA506 conferred UV resistance, presumably due to the plasmid-borne rulAB genes, but did not influence epiphytic fitness of A506 on pear or apple blossoms in the field. pA506 does not appear to confer resistance to antibiotics or other toxic elements. Based on the conjugative nature of pA506 and the large number of its genes that are shared with plasmids from diverse groups of environmental bacteria, the plasmid is likely to serve as a vehicle for genetic exchange between A506 and its coinhabitants on plant surfaces.
doi:10.1128/AEM.01354-13
PMCID: PMC3753976  PMID: 23811504
5.  H-NS Plays a Role in Expression of Acinetobacter baumannii Virulence Features 
Infection and Immunity  2013;81(7):2574-2583.
Acinetobacter baumannii has become a major problem in the clinical setting with the prevalence of infections caused by multidrug-resistant strains on the increase. Nevertheless, only a limited number of molecular mechanisms involved in the success of A. baumannii as a human pathogen have been described. In this study, we examined the virulence features of a hypermotile derivative of A. baumannii strain ATCC 17978, which was found to display enhanced adherence to human pneumocytes and elevated levels of lethality toward Caenorhabditis elegans nematodes. Analysis of cellular lipids revealed modifications to the fatty acid composition, providing a possible explanation for the observed changes in hydrophobicity and subsequent alteration in adherence and motility. Comparison of the genome sequences of the hypermotile variant and parental strain revealed that an insertion sequence had disrupted an hns-like gene in the variant. This gene encodes a homologue of the histone-like nucleoid structuring (H-NS) protein, a known global transcriptional repressor. Transcriptome analysis identified the global effects of this mutation on gene expression, with major changes seen in the autotransporter Ata, a type VI secretion system, and a type I pilus cluster. Interestingly, isolation and analysis of a second independent hypermotile ATCC 17978 variant revealed a mutation to a residue within the DNA binding region of H-NS. Taken together, these mutants indicate that the phenotypic and transcriptomic differences seen are due to loss of regulatory control effected by H-NS.
doi:10.1128/IAI.00065-13
PMCID: PMC3697591  PMID: 23649094
6.  Genome sequence of the human malaria parasite Plasmodium falciparum 
Nature  2002;419(6906):10.1038/nature01097.
The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host–parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.
doi:10.1038/nature01097
PMCID: PMC3836256  PMID: 12368864
7.  Sequences of Two Related Multiple Antibiotic Resistance Virulence Plasmids Sharing a Unique IS26-Related Molecular Signature Isolated from Different Escherichia coli Pathotypes from Different Hosts 
PLoS ONE  2013;8(11):e78862.
Enterohemorrhagic Escherichia coli (EHEC) and atypical enteropathogenic E. coli (aEPEC) are important zoonotic pathogens that increasingly are becoming resistant to multiple antibiotics. Here we describe two plasmids, pO26-CRL125 (125 kb) from a human O26:H- EHEC, and pO111-CRL115 (115kb) from a bovine O111 aEPEC, that impart resistance to ampicillin, kanamycin, neomycin, streptomycin, sulfathiazole, trimethoprim and tetracycline and both contain atypical class 1 integrons with an identical IS26-mediated deletion in their 3´-conserved segment. Complete sequence analysis showed that pO26-CRL125 and pO111-CRL115 are essentially identical except for a 9.7 kb fragment, present in the backbone of pO26-CRL125 but absent in pO111-CRL115, and several indels. The 9.7 kb fragment encodes IncI-associated genes involved in plasmid stability during conjugation, a putative transposase gene and three imperfect repeats. Contiguous sequence identical to regions within these pO26-CRL125 imperfect repeats was identified in pO111-CRL115 precisely where the 9.7 kb fragment is missing, suggesting it may be mobile. Sequences shared between the plasmids include a complete IncZ replicon, a unique toxin/antitoxin system, IncI stability and maintenance genes, a novel putative serine protease autotransporter, and an IncI1 transfer system including a unique shufflon. Both plasmids carry a derivate Tn21 transposon with an atypical class 1 integron comprising a dfrA5 gene cassette encoding resistance to trimethoprim, and 24 bp of the 3´-conserved segment followed by Tn6026, which encodes resistance to ampicillin, kanymycin, neomycin, streptomycin and sulfathiazole. The Tn21-derivative transposon is linked to a truncated Tn1721, encoding resistance to tetracycline, via a region containing the IncP-1α oriV. Absence of the 5 bp direct repeats flanking Tn3-family transposons, indicates that homologous recombination events played a key role in the formation of this complex antibiotic resistance gene locus. Comparative sequence analysis of these closely related plasmids reveals aspects of plasmid evolution in pathogenic E. coli from different hosts.
doi:10.1371/journal.pone.0078862
PMCID: PMC3817090  PMID: 24223859
8.  Effect of Tannic Acid on the Transcriptome of the Soil Bacterium Pseudomonas protegens Pf-5 
Tannins are a diverse group of plant-produced, polyphenolic compounds with metal-chelating and antimicrobial properties that are prevalent in many soils. Using transcriptomics, we determined that tannic acid, a form of hydrolysable tannin, broadly affects the expression of genes involved in iron and zinc homeostases, sulfur metabolism, biofilm formation, motility, and secondary metabolite biosynthesis in the soil- and rhizosphere-inhabiting bacterium Pseudomonas protegens Pf-5.
doi:10.1128/AEM.03101-12
PMCID: PMC3623135  PMID: 23435890
9.  Dead End Metabolites - Defining the Known Unknowns of the E. coli Metabolic Network  
PLoS ONE  2013;8(9):e75210.
The EcoCyc database is an online scientific database which provides an integrated view of the metabolic and regulatory network of the bacterium Escherichia coli K-12 and facilitates computational exploration of this important model organism. We have analysed the occurrence of dead end metabolites within the database – these are metabolites which lack the requisite reactions (either metabolic or transport) that would account for their production or consumption within the metabolic network. 127 dead end metabolites were identified from the 995 compounds that are contained within the EcoCyc metabolic network. Their presence reflects either a deficit in our representation of the network or in our knowledge of E. coli metabolism. Extensive literature searches resulted in the addition of 38 transport reactions and 3 metabolic reactions to the database and led to an improved representation of the pathway for Vitamin B12 salvage. 39 dead end metabolites were identified as components of reactions that are not physiologically relevant to E. coli K-12 – these reactions are properties of purified enzymes in vitro that would not be expected to occur in vivo. Our analysis led to improvements in the software that underpins the database and to the program that finds dead end metabolites within EcoCyc. The remaining dead end metabolites in the EcoCyc database likely represent deficiencies in our knowledge of E. coli metabolism.
doi:10.1371/journal.pone.0075210
PMCID: PMC3781023  PMID: 24086468
10.  Impact of DNA damaging agents on genome-wide transcriptional profiles in two marine Synechococcus species 
Marine microorganisms, particularly those residing in coastal areas, may come in contact with any number of chemicals of environmental or xenobiotic origin. The sensitivity and response of marine cyanobacteria to such chemicals is, at present, poorly understood. We have looked at the transcriptional response of well characterized Synechococcus open ocean (WH8102) and coastal (CC9311) isolates to two DNA damaging agents, mitomycin C and ethidium bromide, using whole-genome expression microarrays. The coastal strain showed differential regulation of a larger proportion of its genome following “shock” treatment with each agent. Many of the orthologous genes in these strains, including those encoding sensor kinases, showed different transcriptional responses, with the CC9311 genes more likely to show significant changes in both treatments. While the overall response of each strain was considerably different, there were distinct transcriptional responses common to both strains observed for each DNA damaging agent, linked to the mode of action of each chemical. In both CC9311 and WH8102 there was evidence of SOS response induction under mitomycin C treatment, with genes recA, lexA and umuC significantly upregulated in this experiment but not under ethidium bromide treatment. Conversely, ethidium bromide treatment tended to result in upregulation of the DNA-directed RNA polymerase genes, not observed following mitomycin C treatment. Interestingly, a large number of genes residing on putative genomic island regions of each genome also showed significant upregulation under one or both chemical treatments.
doi:10.3389/fmicb.2013.00232
PMCID: PMC3744912  PMID: 23966990
cyanobacteria; Synechococcus; transcriptome; microarray; toxic stress; ethidium bromide; mitomycin C; DNA damage
11.  pEl1573 Carrying blaIMP-4, from Sydney, Australia, Is Closely Related to Other IncL/M Plasmids 
Antimicrobial Agents and Chemotherapy  2012;56(11):6029-6032.
Complete sequencing of pEl1573, a representative IncL/M plasmid carrying blaIMP-4 from Sydney, Australia, revealed an ∼60-kb backbone almost identical to those of IncL/M plasmids pCTX-M3, from Poland, and pCTX-M360, from China, and less closely related to pNDM-HK, pOXA-48a, and pEL60, suggesting different lineages. The ∼28-kb Tn2-derived multiresistance region in pEl1573 is inserted in the same location as those in pCTX-M3 and pNDM-HK and shares some of the same components but has undergone rearrangements.
doi:10.1128/AAC.01189-12
PMCID: PMC3486572  PMID: 22926566
12.  The Complete Genome and Phenome of a Community-Acquired Acinetobacter baumannii 
PLoS ONE  2013;8(3):e58628.
Many sequenced strains of Acinetobacter baumannii are established nosocomial pathogens capable of resistance to multiple antimicrobials. Community-acquired A. baumannii in contrast, comprise a minor proportion of all A. baumannii infections and are highly susceptible to antimicrobial treatment. However, these infections also present acute clinical manifestations associated with high reported rates of mortality. We report the complete 3.70 Mbp genome of A. baumannii D1279779, previously isolated from the bacteraemic infection of an Indigenous Australian; this strain represents the first community-acquired A. baumannii to be sequenced. Comparative analysis of currently published A. baumannii genomes identified twenty-four accessory gene clusters present in D1279779. These accessory elements were predicted to encode a range of functions including polysaccharide biosynthesis, type I DNA restriction-modification, and the metabolism of novel carbonaceous and nitrogenous compounds. Conversely, twenty genomic regions present in previously sequenced A. baumannii strains were absent in D1279779, including gene clusters involved in the catabolism of 4-hydroxybenzoate and glucarate, and the A. baumannii antibiotic resistance island, known to bestow resistance to multiple antimicrobials in nosocomial strains. Phenomic analysis utilising the Biolog Phenotype Microarray system indicated that A. baumannii D1279779 can utilise a broader range of carbon and nitrogen sources than international clone I and clone II nosocomial isolates. However, D1279779 was more sensitive to antimicrobial compounds, particularly beta-lactams, tetracyclines and sulphonamides. The combined genomic and phenomic analyses have provided insight into the features distinguishing A. baumannii isolated from community-acquired and nosocomial infections.
doi:10.1371/journal.pone.0058628
PMCID: PMC3602452  PMID: 23527001
13.  Genome Sequence of the Group III Clostridium botulinum Strain Eklund-C 
Genome Announcements  2013;1(2):e00044-13.
The neurotoxins produced by Clostridium botulinum strains are among the world’s most potent toxins and are the causative agents of paralytic botulism. Here, we present the draft genome sequence of the group III C. botulinum strain Eklund-C, including a pseudolysogen-like bacteriophage that harbors the type C neurotoxin operon.
doi:10.1128/genomeA.00044-13
PMCID: PMC3622972  PMID: 23516187
14.  Single-Step Selection of Drug Resistant Acinetobacter baylyi ADP1 Mutants Reveals a Functional Redundancy in the Recruitment of Multidrug Efflux Systems 
PLoS ONE  2013;8(2):e56090.
Members of the genus Acinetobacter have been the focus recent attention due to both their clinical significance and application to molecular biology. The soil commensal bacterium Acinetobacter baylyi ADP1 has been proposed as a model system for molecular and genetic studies, whereas in a clinical environment, Acinetobacter spp. are of increasing importance due to their propensity to cause serious and intractable systemic infections. Clinically, a major factor in the success of Acinetobacter spp. as opportunistic pathogens can be attributed to their ability to rapidly evolve resistance to common antimicrobial compounds. Whole genome sequencing of clinical and environmental Acinetobacter spp. isolates has revealed the presence of numerous multidrug transporters within the core and accessory genomes, suggesting that efflux is an important host defense response in this genus. In this work, we used the drug-susceptible organism A. baylyi ADP1 as a model for studies into the evolution of efflux mediated resistance in genus Acinetobacter, due to the high level of conservation of efflux determinants across four diverse Acinetobacter strains, including clinical isolates. A single exposure of therapeutic concentrations of chloramphenicol to populations of A. baylyi ADP1 cells produced five individual colonies displaying multidrug resistance. The major facilitator superfamily pump craA was upregulated in one mutant strain, whereas the resistance nodulation division pump adeJ was upregulated in the remaining four. Within the adeJ upregulated population, two different levels of adeJ mRNA transcription were observed, suggesting at least three separate mutations were selected after single-step exposure to chloramphenicol. In the craA upregulated strain, a T to G substitution 12 nt upstream of the craA translation initiation codon was observed. Subsequent mRNA stability analyses using this strain revealed that the half-life of mutant craA mRNA was significantly greater than that of wild-type craA mRNA.
doi:10.1371/journal.pone.0056090
PMCID: PMC3567077  PMID: 23409126
15.  The genome of alkaliphilic Bacillus pseudofirmus OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4 
Environmental microbiology  2011;13(12):3289-3309.
Summary
Bacillus pseudofirmus OF4 is an extreme but facultative alkaliphile that grows non-fermentatively in a pH range from 7.5 to above 11.4 and can withstand large sudden increases in external pH. It is a model organism for studies of bioenergetics at high pH, at which energy demands are higher than at neutral pH because both cytoplasmic pH homeostasis and ATP synthesis require more energy. The alkaliphile also tolerates a cytoplasmic pH > 9.0 at external pH values at which the pH homeostasis capacity is exceeded, and manages other stresses that are exacerbated at alkaline pH, e.g. sodium, oxidative and cell wall stresses. The genome of B. pseudofirmus OF4 includes two plasmids that are lost from some mutants without viability loss. The plasmids may provide a reservoir of mobile elements that promote adaptive chromosomal rearrangements under particular environmental conditions. The genome also reveals a more acidic pI profile for proteins exposed on the outer surface than found in neutralophiles. A large array of transporters and regulatory genes are predicted to protect the alkaliphile from its overlapping stresses. In addition, unanticipated metabolic versatility was observed, which could ensure requisite energy for alkaliphily under diverse conditions.
doi:10.1111/j.1462-2920.2011.02591.x
PMCID: PMC3228905  PMID: 21951522
16.  EcoCyc: fusing model organism databases with systems biology 
Nucleic Acids Research  2012;41(D1):D605-D612.
EcoCyc (http://EcoCyc.org) is a model organism database built on the genome sequence of Escherichia coli K-12 MG1655. Expert manual curation of the functions of individual E. coli gene products in EcoCyc has been based on information found in the experimental literature for E. coli K-12-derived strains. Updates to EcoCyc content continue to improve the comprehensive picture of E. coli biology. The utility of EcoCyc is enhanced by new tools available on the EcoCyc web site, and the development of EcoCyc as a teaching tool is increasing the impact of the knowledge collected in EcoCyc.
doi:10.1093/nar/gks1027
PMCID: PMC3531154  PMID: 23143106
17.  pJIE137 Carrying blaCTX-M-62 Is Closely Related to p271A Carrying blaNDM-1 
Complete sequencing of pJIE137 revealed a backbone closely related to p271A, encoding a novel RepA protein but with a similar organization and up to ∼70% nucleotide identity to IncN plasmids. A region in pJIE137 resembling the IncN CUP regulon is mostly missing from p271A, presumably due to recombination. The class 1 In/Tn and ISEcp1-blaCTX-M-62 transposition unit in pJIE137 and a putative transposon carrying blaNDM-1 in p271A are inserted in different locations in the plasmid backbone.
doi:10.1128/AAC.05796-11
PMCID: PMC3318322  PMID: 22252811
18.  Comparative Genomics of Plant-Associated Pseudomonas spp.: Insights into Diversity and Inheritance of Traits Involved in Multitrophic Interactions 
PLoS Genetics  2012;8(7):e1002784.
We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multilocus sequence analysis placed the strains in three sub-clades, which was reinforced by high levels of synteny, size of core genomes, and relatedness of orthologous genes between strains within a sub-clade. The heterogeneity of the P. fluorescens group was reflected in the large size of its pan-genome, which makes up approximately 54% of the pan-genome of the genus as a whole, and a core genome representing only 45–52% of the genome of any individual strain. We discovered genes for traits that were not known previously in the strains, including genes for the biosynthesis of the siderophores achromobactin and pseudomonine and the antibiotic 2-hexyl-5-propyl-alkylresorcinol; novel bacteriocins; type II, III, and VI secretion systems; and insect toxins. Certain gene clusters, such as those for two type III secretion systems, are present only in specific sub-clades, suggesting vertical inheritance. Almost all of the genes associated with multitrophic interactions map to genomic regions present in only a subset of the strains or unique to a specific strain. To explore the evolutionary origin of these genes, we mapped their distributions relative to the locations of mobile genetic elements and repetitive extragenic palindromic (REP) elements in each genome. The mobile genetic elements and many strain-specific genes fall into regions devoid of REP elements (i.e., REP deserts) and regions displaying atypical tri-nucleotide composition, possibly indicating relatively recent acquisition of these loci. Collectively, the results of this study highlight the enormous heterogeneity of the P. fluorescens group and the importance of the variable genome in tailoring individual strains to their specific lifestyles and functional repertoire.
Author Summary
We sequenced the genomes of seven strains of the Pseudomonas fluorescens group that colonize plant surfaces and function as biological control agents, protecting plants from disease. In this study, we demonstrated the genomic diversity of the group by comparing these strains to each other and to three other strains that were sequenced previously. Only about half of the genes in each strain are present in all of the other strains, and each strain has hundreds of unique genes that are not present in the other genomes. We mapped the genes that contribute to biological control in each genome and found that most of the biological control genes are in the variable regions of the genome, which are not shared by all of the other strains. This finding is consistent with our knowledge of the distinctive biology of each strain. Finally, we looked for new genes that are likely to confer antimicrobial traits needed to suppress plant pathogens, but have not been identified previously. In each genome, we discovered many of these new genes, which provide avenues for future discovery of new traits with the potential to manage plant diseases in agriculture or natural ecosystems.
doi:10.1371/journal.pgen.1002784
PMCID: PMC3390384  PMID: 22792073
19.  Influence of nutrients and currents on the genomic composition of microbes across an upwelling mosaic 
The ISME Journal  2012;6(7):1403-1414.
Metagenomic data sets were generated from samples collected along a coastal to open ocean transect between Southern California Bight and California Current waters during a seasonal upwelling event, providing an opportunity to examine the impact of episodic pulses of cold nutrient-rich water into surface ocean microbial communities. The data set consists of ∼5.8 million predicted proteins across seven sites, from three different size classes: 0.1–0.8, 0.8–3.0 and 3.0–200.0 μm. Taxonomic and metabolic analyses suggest that sequences from the 0.1–0.8 μm size class correlated with their position along the upwelling mosaic. However, taxonomic profiles of bacteria from the larger size classes (0.8–200 μm) were less constrained by habitat and characterized by an increase in Cyanobacteria, Bacteroidetes, Flavobacteria and double-stranded DNA viral sequences. Functional annotation of transmembrane proteins indicate that sites comprised of organisms with small genomes have an enrichment of transporters with substrate specificities for amino acids, iron and cadmium, whereas organisms with larger genomes have a higher percentage of transporters for ammonium and potassium. Eukaryotic-type glutamine synthetase (GS) II proteins were identified and taxonomically classified as viral, most closely related to the GSII in Mimivirus, suggesting that marine Mimivirus-like particles may have played a role in the transfer of GSII gene functions. Additionally, a Planctomycete bloom was sampled from one upwelling site providing a rare opportunity to assess the genomic composition of a marine Planctomycete population. The significant correlations observed between genomic properties, community structure and nutrient availability provide insights into habitat-driven dynamics among oligotrophic versus upwelled marine waters adjoining each other spatially.
doi:10.1038/ismej.2011.201
PMCID: PMC3379637  PMID: 22278668
marine; metagenomics; upwelling; California Current
20.  The Effect of Iron Limitation on the Transcriptome and Proteome of Pseudomonas fluorescens Pf-5 
PLoS ONE  2012;7(6):e39139.
One of the most important micronutrients for bacterial growth is iron, whose bioavailability in soil is limited. Consequently, rhizospheric bacteria such as Pseudomonas fluorescens employ a range of mechanisms to acquire or compete for iron. We investigated the transcriptomic and proteomic effects of iron limitation on P. fluorescens Pf-5 by employing microarray and iTRAQ techniques, respectively. Analysis of this data revealed that genes encoding functions related to iron homeostasis, including pyoverdine and enantio-pyochelin biosynthesis, a number of TonB-dependent receptor systems, as well as some inner-membrane transporters, were significantly up-regulated in response to iron limitation. Transcription of a ribosomal protein L36-encoding gene was also highly up-regulated during iron limitation. Certain genes or proteins involved in biosynthesis of secondary metabolites such as 2,4-diacetylphloroglucinol (DAPG), orfamide A and pyrrolnitrin, as well as a chitinase, were over-expressed under iron-limited conditions. In contrast, we observed that expression of genes involved in hydrogen cyanide production and flagellar biosynthesis were down-regulated in an iron-depleted culture medium. Phenotypic tests revealed that Pf-5 had reduced swarming motility on semi-solid agar in response to iron limitation. Comparison of the transcriptomic data with the proteomic data suggested that iron acquisition is regulated at both the transcriptional and post-transcriptional levels.
doi:10.1371/journal.pone.0039139
PMCID: PMC3377617  PMID: 22723948
21.  Complete Sequence of pJIE143, a pir-Type Plasmid Carrying ISEcp1-blaCTX-M-15 from an Escherichia coli ST131 Isolate ▿ 
Antimicrobial Agents and Chemotherapy  2011;55(12):5933-5935.
pJIE143 (34 kb), from an Escherichia coli ST131 isolate, carries blaCTX-M-15 but could not be typed using the standard PCR-based replicon-typing primer set. Complete sequencing revealed a backbone with similarity to IncX plasmids, including a pir-like gene encoding a π-like replication protein and iterons related to those of other IncX plasmids. The 2.971-kb ISEcp1-blaCTX-M-15-orf477Δ transposition unit often found within Tn2 is inserted just beyond the end of pir, flanked by 5-bp direct repeats.
doi:10.1128/AAC.00639-11
PMCID: PMC3232798  PMID: 21911569
22.  Genome Sequences of the Biotechnologically Important Bacillus megaterium Strains QM B1551 and DSM319 ▿† 
Journal of Bacteriology  2011;193(16):4199-4213.
Bacillus megaterium is deep-rooted in the Bacillus phylogeny, making it an evolutionarily key species and of particular importance in understanding genome evolution, dynamics, and plasticity in the bacilli. B. megaterium is a commercially available, nonpathogenic host for the biotechnological production of several substances, including vitamin B12, penicillin acylase, and amylases. Here, we report the analysis of the first complete genome sequences of two important B. megaterium strains, the plasmidless strain DSM319 and QM B1551, which harbors seven indigenous plasmids. The 5.1-Mbp chromosome carries approximately 5,300 genes, while QM B1551 plasmids represent a combined 417 kb and 523 genes, one of the largest plasmid arrays sequenced in a single bacterial strain. We have documented extensive gene transfer between the plasmids and the chromosome. Each strain carries roughly 300 strain-specific chromosomal genes that account for differences in their experimentally confirmed phenotypes. B. megaterium is able to synthesize vitamin B12 through an oxygen-independent adenosylcobalamin pathway, which together with other key energetic and metabolic pathways has now been fully reconstructed. Other novel genes include a second ftsZ gene, which may be responsible for the large cell size of members of this species, as well as genes for gas vesicles, a second β-galactosidase gene, and most but not all of the genes needed for genetic competence. Comprehensive analyses of the global Bacillus gene pool showed that only an asymmetric region around the origin of replication was syntenic across the genus. This appears to be a characteristic feature of the Bacillus spp. genome architecture and may be key to their sporulating lifestyle.
doi:10.1128/JB.00449-11
PMCID: PMC3147683  PMID: 21705586
23.  Bacterial Subfamily of LuxR Regulators That Respond to Plant Compounds▿† 
Applied and Environmental Microbiology  2011;77(13):4579-4588.
Pseudomonas fluorescens are rhizobacteria known for their biocontrol properties. Several antimicrobial functions are crucial for this process, and the experiments described here investigate the modulation of their expression during the plant-bacterium interaction. The role of a LuxR family regulator in interkingdom signaling has been investigated using genome-scale transcriptome analysis, gene promoter studies in vivo and in vitro, biocontrol assays, and response to plant compounds. PsoR, a LuxR solo or orphan regulator of P. fluorescens, was identified. PsoR is solubilized and activates a lux-box-containing promoter only in the presence of macerated plants, suggesting the presence of a plant molecule(s) that most likely binds to PsoR. Gene expression profiles revealed that genes involved in the inhibition of plant pathogens were affected by PsoR, including a chitinase gene, iron metabolism genes, and biosynthetic genes of antifungal compounds. 2,4-Diacetylphloroglucinol production is PsoR dependent both in vitro and in vivo. psoR mutants were significantly reduced for their ability to protect wheat plants from root rot, and damping-off caused by Pythium ultimum infection. PsoR most likely senses a molecule(s) in the plant and modulates expression of genes that have a role in biocontrol. PsoR and related proteins form a subfamily of LuxR family regulators in plant-associated bacteria.
doi:10.1128/AEM.00183-11
PMCID: PMC3127701  PMID: 21531826
24.  Selection in Coastal Synechococcus (Cyanobacteria) Populations Evaluated from Environmental Metagenomes 
PLoS ONE  2011;6(9):e24249.
Environmental metagenomics provides snippets of genomic sequences from all organisms in an environmental sample and are an unprecedented resource of information for investigating microbial population genetics. Current analytical methods, however, are poorly equipped to handle metagenomic data, particularly of short, unlinked sequences. A custom analytical pipeline was developed to calculate dN/dS ratios, a common metric to evaluate the role of selection in the evolution of a gene, from environmental metagenomes sequenced using 454 technology of flow-sorted populations of marine Synechococcus, the dominant cyanobacteria in coastal environments. The large majority of genes (98%) have evolved under purifying selection (dN/dS<1). The metagenome sequence coverage of the reference genomes was not uniform and genes that were highly represented in the environment (i.e. high read coverage) tended to be more evolutionarily conserved. Of the genes that may have evolved under positive selection (dN/dS>1), 77 out of 83 (93%) were hypothetical. Notable among annotated genes, ribosomal protein L35 appears to be under positive selection in one Synechococcus population. Other annotated genes, in particular a possible porin, a large-conductance mechanosensitive channel, an ATP binding component of an ABC transporter, and a homologue of a pilus retraction protein had regions of the gene with elevated dN/dS. With the increasing use of next-generation sequencing in metagenomic investigations of microbial diversity and ecology, analytical methods need to accommodate the peculiarities of these data streams. By developing a means to analyze population diversity data from these environmental metagenomes, we have provided the first insight into the role of selection in the evolution of Synechococcus, a globally significant primary producer.
doi:10.1371/journal.pone.0024249
PMCID: PMC3170327  PMID: 21931665
25.  Structural and Functional Analysis of the Type III Secretion System from Pseudomonas fluorescens Q8r1-96▿ §  
Journal of Bacteriology  2010;193(1):177-189.
Pseudomonas fluorescens Q8r1-96 represents a group of rhizosphere strains responsible for the suppressiveness of agricultural soils to take-all disease of wheat. It produces the antibiotic 2,4-diacetylphloroglucinol and aggressively colonizes the roots of cereal crops. In this study, we analyzed the genome of Q8r1-96 and identified a type III protein secretion system (T3SS) gene cluster that has overall organization similar to that of the T3SS gene cluster of the plant pathogen Pseudomonas syringae. We also screened a collection of 30 closely related P. fluorescens strains and detected the T3SS genes in all but one of them. The Q8r1-96 genome contained ropAA and ropM type III effector genes, which are orthologs of the P. syringae effector genes hopAA1-1 and hopM1, as well as a novel type III effector gene designated ropB. These type III effector genes encoded proteins that were secreted in culture and injected into plant cells by both P. syringae and Q8r1-96 T3SSs. The Q8r1-96 T3SS was expressed in the rhizosphere, but mutants lacking a functional T3SS were not altered in their rhizosphere competence. The Q8r1-96 type III effectors RopAA, RopB, and RopM were capable of suppressing the hypersensitive response and production of reactive oxygen species, two plant immune responses.
doi:10.1128/JB.00895-10
PMCID: PMC3019950  PMID: 20971913

Results 1-25 (79)