Search tips
Search criteria

Results 1-14 (14)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Spaceflight Induces Specific Alterations in the Proteomes of Arabidopsis 
Astrobiology  2015;15(1):32-56.
Life in spaceflight demonstrates remarkable acclimation processes within the specialized habitats of vehicles subjected to the myriad of unique environmental issues associated with orbital trajectories. To examine the response processes that occur in plants in space, leaves and roots from Arabidopsis (Arabidopsis thaliana) seedlings from three GFP reporter lines that were grown from seed for 12 days on the International Space Station and preserved on orbit in RNAlater were returned to Earth and analyzed by using iTRAQ broad-scale proteomics procedures. Using stringent criteria, we identified over 1500 proteins, which included 1167 leaf proteins and 1150 root proteins we were able to accurately quantify. Quantification revealed 256 leaf proteins and 358 root proteins that showed statistically significant differential abundance in the spaceflight samples compared to ground controls, with few proteins differentially regulated in common between leaves and roots. This indicates that there are measurable proteomics responses to spaceflight and that the responses are organ-specific. These proteomics data were compared with transcriptome data from similar spaceflight samples, showing that there is a positive but limited relationship between transcriptome and proteome regulation of the overall spaceflight responses of plants. These results are discussed in terms of emergence understanding of plant responses to spaceflight particularly with regard to cell wall remodeling, as well as in the context of deriving multiple omics data sets from a single on-orbit preservation and operations approach. Key Words: Space biology—Proteomics—Gene expression—ISS. Astrobiology 15, 32–56.
PMCID: PMC4290804  PMID: 25517942
2.  Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight 
BMC Plant Biology  2013;13:112.
Spaceflight presents a novel environment that is outside the evolutionary experience of terrestrial organisms. Full activation of the International Space Station as a science platform complete with sophisticated plant growth chambers, laboratory benches, and procedures for effective sample return, has enabled a new level of research capability and hypothesis testing in this unique environment. The opportunity to examine the strategies of environmental sensing in spaceflight, which includes the absence of unit gravity, provides a unique insight into the balance of influence among abiotic cues directing plant growth and development: including gravity, light, and touch. The data presented here correlate morphological and transcriptome data from replicated spaceflight experiments.
The transcriptome of Arabidopsis thaliana demonstrated organ-specific changes in response to spaceflight, with 480 genes showing significant changes in expression in spaceflight plants compared with ground controls by at least 1.9-fold, and 58 by more than 7-fold. Leaves, hypocotyls, and roots each displayed unique patterns of response, yet many gene functions within the responses are related. Particularly represented across the dataset were genes associated with cell architecture and growth hormone signaling; processes that would not be anticipated to be altered in microgravity yet may correlate with morphological changes observed in spaceflight plants. As examples, differential expression of genes involved with touch, cell wall remodeling, root hairs, and cell expansion may correlate with spaceflight-associated root skewing, while differential expression of auxin-related and other gravity-signaling genes seemingly correlates with the microgravity of spaceflight. Although functionally related genes were differentially represented in leaves, hypocotyls, and roots, the expression of individual genes varied substantially across organ types, indicating that there is no single response to spaceflight. Rather, each organ employed its own response tactics within a shared strategy, largely involving cell wall architecture.
Spaceflight appears to initiate cellular remodeling throughout the plant, yet specific strategies of the response are distinct among specific organs of the plant. Further, these data illustrate that in the absence of gravity plants rely on other environmental cues to initiate the morphological responses essential to successful growth and development, and that the basis for that engagement lies in the differential expression of genes in an organ-specific manner that maximizes the utilization of these signals – such as the up-regulation of genes associated with light-sensing in roots.
PMCID: PMC3750915  PMID: 23919896
3.  A method for preparing spaceflight RNAlater-fixed Arabidopsis thaliana (Brassicaceae) tissue for scanning electron microscopy1 
Applications in Plant Sciences  2013;1(8):apps.1300034.
• Premise of the study: In spaceflight experiments, tissues for morphologic study are fixed in 3% glutaraldehyde, while tissues for molecular study are fixed in RNAlater; thus, an experiment containing both study components requires multiple fixation strategies. The possibility of using RNAlater-fixed materials for standard SEM-based morphometric investigation was explored to expand the library of tissues available for analysis and maximize usage of samples returned from spaceflight, but these technologies have wide application to any situation where recovery of biological resources is limited.
• Methods and Results: RNAlater-fixed samples were desalinated in distilled water, dehydrated through graded methanol, plunged into liquid ethane, and transferred to cryovials for freeze-substitution. Sample tissues were critical point dried, mounted, sputter-coated, and imaged.
• Conclusions: The protocol resulted in acceptable SEM images from RNAlater-fixed Arabidopsis thaliana tissue. The majority of the tissues remained intact, including general morphology and finer details such as root hairs and trichomes.
PMCID: PMC4103452  PMID: 25202579
Arabidopsis thaliana; RNAlater; scanning electron microscopy; SEM; spaceflight
4.  Deployment of a Fully-Automated Green Fluorescent Protein Imaging System in a High Arctic Autonomous Greenhouse 
Sensors (Basel, Switzerland)  2013;13(3):3530-3548.
Higher plants are an integral part of strategies for sustained human presence in space. Space-based greenhouses have the potential to provide closed-loop recycling of oxygen, water and food. Plant monitoring systems with the capacity to remotely observe the condition of crops in real-time within these systems would permit operators to take immediate action to ensure optimum system yield and reliability. One such plant health monitoring technique involves the use of reporter genes driving fluorescent proteins as biological sensors of plant stress. In 2006 an initial prototype green fluorescent protein imager system was deployed at the Arthur Clarke Mars Greenhouse located in the Canadian High Arctic. This prototype demonstrated the advantageous of this biosensor technology and underscored the challenges in collecting and managing telemetric data from exigent environments. We present here the design and deployment of a second prototype imaging system deployed within and connected to the infrastructure of the Arthur Clarke Mars Greenhouse. This is the first imager to run autonomously for one year in the un-crewed greenhouse with command and control conducted through the greenhouse satellite control system. Images were saved locally in high resolution and sent telemetrically in low resolution. Imager hardware is described, including the custom designed LED growth light and fluorescent excitation light boards, filters, data acquisition and control system, and basic sensing and environmental control. Several critical lessons learned related to the hardware of small plant growth payloads are also elaborated.
PMCID: PMC3658760  PMID: 23486220
green fluorescent protein; remote sensor; telemetry; plant health; life support; mars; astrobiology; analogue environments; imaging
5.  Spaceflight Transcriptomes: Unique Responses to a Novel Environment 
Astrobiology  2012;12(1):40-56.
The spaceflight environment presents unique challenges to terrestrial biology, including but not limited to the direct effects of gravity. As we near the end of the Space Shuttle era, there remain fundamental questions about the response and adaptation of plants to orbital spaceflight conditions. We address a key baseline question of whether gene expression changes are induced by the orbital environment, and then we ask whether undifferentiated cells, cells presumably lacking the typical gravity response mechanisms, perceive spaceflight. Arabidopsis seedlings and undifferentiated cultured Arabidopsis cells were launched in April, 2010, as part of the BRIC-16 flight experiment on STS-131. Biologically replicated DNA microarray and averaged RNA digital transcript profiling revealed several hundred genes in seedlings and cell cultures that were significantly affected by launch and spaceflight. The response was moderate in seedlings; only a few genes were induced by more than 7-fold, and the overall intrinsic expression level for most differentially expressed genes was low. In contrast, cell cultures displayed a more dramatic response, with dozens of genes showing this level of differential expression, a list comprised primarily of heat shock–related and stress-related genes. This baseline transcriptome profiling of seedlings and cultured cells confirms the fundamental hypothesis that survival of the spaceflight environment requires adaptive changes that are both governed and displayed by alterations in gene expression. The comparison of intact plants with cultures of undifferentiated cells confirms a second hypothesis: undifferentiated cells can detect spaceflight in the absence of specialized tissue or organized developmental structures known to detect gravity. Key Words: Tissue culture—Microgravity—Low Earth orbit—Space Shuttle—Microarray. Astrobiology 12, 40–56.
PMCID: PMC3264962  PMID: 22221117
6.  Plant growth strategies are remodeled by spaceflight 
BMC Plant Biology  2012;12:232.
Arabidopsis plants were grown on the International Space Station within specialized hardware that combined a plant growth habitat with a camera system that can capture images at regular intervals of growth. The Imaging hardware delivers telemetric data from the ISS, specifically images received in real-time from experiments on orbit, providing science without sample return. Comparable Ground Controls were grown in a sister unit that is maintained in the Orbital Environment Simulator at Kennedy Space Center. One of many types of biological data that can be analyzed in this fashion is root morphology. Arabidopsis seeds were geminated on orbit on nutrient gel Petri plates in a configuration that encouraged growth along the surface of the gel. Photos were taken every six hours for the 15 days of the experiment.
In the absence of gravity, but the presence of directional light, spaceflight roots remained strongly negatively phototropic and grew in the opposite direction of the shoot growth; however, cultivars WS and Col-0 displayed two distinct, marked differences in their growth patterns. First, cultivar WS skewed strongly to the right on orbit, while cultivar Col-0 grew with little deviation away from the light source. Second, the Spaceflight environment also impacted the rate of growth in Arabidopsis. The size of the Flight plants (as measured by primary root and hypocotyl length) was uniformly smaller than comparably aged Ground Control plants in both cultivars.
Skewing and waving, thought to be gravity dependent phenomena, occur in spaceflight plants. In the presence of an orienting light source, phenotypic trends in skewing are gravity independent, and the general patterns of directional root growth typified by a given genotype in unit gravity are recapitulated on orbit, although overall growth patterns on orbit are less uniform. Skewing appears independent of axial orientation on the ISS – suggesting that other tropisms (such as for oxygen and temperature) do not influence skewing. An aspect of the spaceflight environment also retards the rate of early Arabidopsis growth.
PMCID: PMC3556330  PMID: 23217113
7.  The 14-3-3 proteins of Arabidopsis regulate root growth and chloroplast development as components of the photosensory system 
Journal of Experimental Botany  2012;63(8):3061-3070.
The 14-3-3 proteins specifically bind a number of client proteins to influence important pathways, including flowering timing via the photosensory system. For instance, 14-3-3 proteins influence the photosensory system through interactions with Constans (CO) protein. 14-3-3 associations with the photosensory system were further studied in this investigation using 14-3-3 T-DNA insertion mutants to study root and chloroplast development. The 14-3-3 μ T-DNA insertion mutant, 14-3-3μ-1, had shorter roots than the wild type and the difference in root length could be influenced by light intensity. The 14-3-3 ν T-DNA insertion mutants also had shorter roots, but only when grown under narrow-bandwidth red light. Five-day-old 14-3-3 T-DNA insertion and co mutants all had increased root greening compared with the wild type, which was influenced by light wavelength and intensity. However, beyond 10 d of growth, 14-3-3μ-1 roots did not increase in greening as much as wild-type roots. This study reveals new developmental roles of 14-3-3 proteins in roots and chloroplasts, probably via association with the photosensory system.
PMCID: PMC3350920  PMID: 22378945
Chloroplast; photosensory system; plastid; 14-3-3 proteins; root development
8.  14-3-3 phosphoprotein interaction networks – does isoform diversity present functional interaction specification? 
The 14-3-3 proteins have emerged as major phosphoprotein interaction proteins and thereby constitute a key node in the Arabidopsis Interactome Map, a node through which a large number of important signals pass. Throughout their history of discovery and description, the 14-3-3s have been described as protein families and there has been some evidence that the different 14-3-3 family members within any organism might carry isoform-specific functions. However, there has also been evidence for redundancy of 14-3-3 function, suggesting that the perceived 14-3-3 diversity may be the accumulation of neutral mutations over evolutionary time and as some 14-3-3 genes develop tissue or organ-specific expression. This situation has led to a currently unresolved question – does 14-3-3 isoform sequence diversity indicate functional diversity at the biochemical or cellular level? We discuss here some of the key observations on both sides of the resulting debate, and present a set of contrastable observations to address the theory functional diversity does exist among 14-3-3 isoforms. The resulting model suggests strongly that there are indeed functional specificities in the 14-3-3s of Arabidopsis. The model further suggests that 14-3-3 diversity and specificity should enter into the discussion of 14-3-3 roles in signal transduction and be directly approached in 14-3-3 experimentation. It is hoped that future studies involving 14-3-3s will continue to address specificity in experimental design and analysis.
PMCID: PMC3422896  PMID: 22934100
Arabidopsis; GRF; plant; subcellular localization; 14-3-3 isoform specificity
9.  Growth Performance and Root Transcriptome Remodeling of Arabidopsis in Response to Mars-Like Levels of Magnesium Sulfate 
PLoS ONE  2010;5(8):e12348.
Martian regolith (unconsolidated surface material) is a potential medium for plant growth in bioregenerative life support systems during manned missions on Mars. However, hydrated magnesium sulfate mineral levels in the regolith of Mars can reach as high as 10 wt%, and would be expected to be highly inhibitory to plant growth.
Methodology and Principal Findings
Disabling ion transporters AtMRS2-10 and AtSULTR1;2, which are plasma membrane localized in peripheral root cells, is not an effective way to confer tolerance to magnesium sulfate soils. Arabidopsis mrs2-10 and sel1-10 knockout lines do not mitigate the growth inhibiting impacts of high MgSO4·7H2O concentrations observed with wildtype plants. A global approach was used to identify novel genes with potential to enhance tolerance to high MgSO4·7H2O (magnesium sulfate) stress. The early Arabidopsis root transcriptome response to elevated concentrations of magnesium sulfate was characterized in Col-0, and also between Col-0 and the mutant line cax1-1, which was confirmed to be relatively tolerant of high levels of MgSO4·7H2O in soil solution. Differentially expressed genes in Col-0 treated for 45 min. encode enzymes primarily involved in hormone metabolism, transcription factors, calcium-binding proteins, kinases, cell wall related proteins and membrane-based transporters. Over 200 genes encoding transporters were differentially expressed in Col-0 up to 180 min. of exposure, and one of the first down-regulated genes was CAX1. The importance of this early response in wildtype Arabidopsis is exemplified in the fact that only four transcripts were differentially expressed between Col-0 and cax1-1 at 180 min. after initiation of treatment.
The results provide a solid basis for the understanding of the metabolic response of plants to elevated magnesium sulfate soils; it is the first transcriptome analysis of plants in this environment. The results foster the development of Mars soil-compatible plants by showing that cax1 mutants exhibit partial tolerance to magnesium sulfate, and by elucidating a small subset (500 vs. >10,000) of candidate genes for mutation or metabolic engineering that will enhance tolerance to magnesium sulfate soils.
PMCID: PMC2925951  PMID: 20808807
10.  14-3-3 proteins, red light and photoperiodic flowering 
Plant Signaling & Behavior  2008;3(8):511-515.
The 14-3-3 family of proteins is well known for participating in signal transduction by binding specifically phosphorylated proteins, thereby completing their kinase-induced transition in activity or localization. This interaction-based modulation of signal flux through metabolic pathways is a critical feature of many important eukaryotic signal transduction cascades. Only recently, however, have studies in Arabidopsis thaliana described that some of the most fundamental plant signal transduction pathways, including the photoperiodic flowering pathway, are functionally affected by 14-3-3s. There are pivotal points in the photoperiod pathway that are characterized by the accumulation, localization and stability of critical protein factors, all of which are strongly affected by light quality and photoperiod duration. These mechanisms (localization, phosphorylation, regulated proteolysis) are the same as those regulated by 14-3-3 proteins in other systems. Yet it is only recently that well characterized 14-3-3 genetic tools have become available in sufficient diversity to make it possible to truly tie 14-3-3 interactions to light signaling and flowering. This review presents an overview of photoperiodic flowering signaling and direct 14-3-3 participation in the process, coupled with a discussion of the overlapping and specific roles of 14-3-3s which present confounding issues in the functional dissection of this family of signaling proteins.
PMCID: PMC2634483  PMID: 19513242
isoform specificity; protein interaction; phosphorylation; signaling
11.  14-3-3 isoforms participate in red light signaling and photoperiodic flowering 
Plant Signaling & Behavior  2008;3(5):304-306.
Members of the 14-3-3 family of proteins participate in signal transduction by modulating flux through various pathways. Potential subfunctionalization within this family has produced a suite of related proteins with diverse client interactions and discrete localization. The associated study assesses the biological roles of two specific 14-3-3 isoforms, using genetic, biochemical and physiological assays to ascertain potential nodes of interaction. Arabidopsis T-DNA insertion mutants representing the ν and μ isoforms exhibited a short, yet clear delay in flowering time on long days. Tests of hypocotyl growth inhibition under narrow bandwidth light indicated a hyposensitivity to red light, while responses to blue and far-red light were normal. These physiological tests suggest a mechanistic link between 14-3-3 proteins, red light sensing, and the pathways that control photoperiodic flowering. The precise entry point into the pathway was assessed using yeast two hybrid assays targeted against specific proteins active in the circadian oscillator, light transduction and photoperiodic flowering. Yeast two hybrid interaction was observed with CONSTANS (CO), and then confirmed with coimmunoprecipitation. Functional interaction with phyB leading to defects in flowering time and direct interaction with CONSTANS circumstantially places these specific 14-3-3 isoforms into the pathway that regulates the transition between vegetative and floral development.
PMCID: PMC2634265  PMID: 19841653
isoform specificity; protein interaction; phosphorylation; signaling
12.  Deployment of a Prototype Plant GFP Imager at the Arthur Clarke Mars Greenhouse of the Haughton Mars Project 
Sensors (Basel, Switzerland)  2008;8(4):2762-2773.
The use of engineered plants as biosensors has made elegant strides in the past decades, providing keen insights into the health of plants in general and particularly in the nature and cellular location of stress responses. However, most of the analytical procedures involve laboratory examination of the biosensor plants. With the advent of the green fluorescence protein (GFP) as a biosensor molecule, it became at least theoretically possible for analyses of gene expression to occur telemetrically, with the gene expression information of the plant delivered to the investigator over large distances simply as properly processed fluorescence images. Spaceflight and other extraterrestrial environments provide unique challenges to plant life, challenges that often require changes at the gene expression level to accommodate adaptation and survival. Having previously deployed transgenic plant biosensors to evaluate responses to orbital spaceflight, we wished to develop the plants and especially the imaging devices required to conduct such experiments robotically, without operator intervention, within extraterrestrial environments. This requires the development of an autonomous and remotely operated plant GFP imaging system and concomitant development of the communications infrastructure to manage dataflow from the imaging device. Here we report the results of deploying a prototype GFP imaging system within the Arthur Clarke Mars Greenhouse (ACMG) an autonomously operated greenhouse located within the Haughton Mars Project in the Canadian High Arctic. Results both demonstrate the applicability of the fundamental GFP biosensor technology and highlight the difficulties in collecting and managing telemetric data from challenging deployment environments.
PMCID: PMC3673444
Green Fluorescent Protein; telemetry; Mars; astrobiology; analog environments
13.  High magnetic field induced changes of gene expression in arabidopsis 
High magnetic fields are becoming increasingly prevalent components of non-invasive, biomedical imaging tools (such as MRI), thus, an understanding of the molecular impacts associated with these field strengths in biological systems is of central importance. The biological impact of magnetic field strengths up to 30 Tesla were investigated in this study through the use of transgenic Arabidopsis plants engineered with a stress response gene consisting of the alcohol dehydrogenase (Adh) gene promoter driving the β-glucuronidase (GUS) gene reporter.
Magnetic field induced Adh/GUS activity was evaluated with histochemical staining to assess tissue specific expression and distribution, and with quantitative, spectrofluometric assays to measure degree of activation. The evaluation of global changes in the Arabidopsis genome in response to exposure to high magnetic fields was facilitated with Affymetrix Gene Chip microarrays. Quantitative analyses of gene expression were performed with quantitative real-time polymerase-chain-reaction (qRT-PCR).
Field strengths in excess of about 15 Tesla induce expression of the Adh/GUS transgene in the roots and leaves. From the microarray analyses that surveyed 8000 genes, 114 genes were differentially expressed to a degree greater than 2.5 fold over the control. These results were quantitatively corroborated by qRT-PCR examination of 4 of the 114 genes.
The data suggest that magnetic fields in excess of 15 Tesla have far-reaching effect on the genome. The wide-spread induction of stress-related genes and transcription factors, and a depression of genes associated with cell wall metabolism, are prominent examples. The roles of magnetic field orientation of macromolecules and magnetophoretic effects are discussed as possible factors that contribute to the mounting of this response.
PMCID: PMC1764872  PMID: 17187667
14.  Isoform-specific Subcellular Localization among 14-3-3 Proteins in Arabidopsis Seems to be Driven by Client InteractionsV⃞ 
Molecular Biology of the Cell  2005;16(4):1735-1743.
In most higher eukaryotes, the predominantly phosphoprotein-binding 14-3-3 proteins are the products of a multigene family, with many organisms having 10 or more family members. However, current models for 14-3-3/phosphopeptide interactions suggest that there is little specificity among 14-3-3s for diverse phosphopeptide clients. Therefore, the existence of sequence diversity among 14-3-3s within a single organism begs questions regarding the in vivo specificities of the interactions between the various 14-3-3s and their clients. Chief among those questions is, Do the different 14-3-3 isoforms interact with different clients within the same cell? Although the members of the Arabidopsis 14-3-3 family of proteins typically contain highly conserved regions of sequence, they also display distinctive variability with deep evolutionary roots. In the current study, a survey of several Arabidopsis 14-3-3/GFP fusions revealed that 14-3-3s demonstrate distinct and differential patterns of subcellular distribution, by using trichomes and stomate guard cells as in vivo experimental cellular contexts. The effects of client interaction on 14-3-3 localization were further analyzed by disrupting the partnering with peptide and chemical agents. Results indicate that 14-3-3 localization is both isoform specific and highly dependent upon interaction with cellular clients.
PMCID: PMC1073656  PMID: 15659648

Results 1-14 (14)