PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-1 (1)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Facile Pyrolytic Synthesis of Silicon Nanowires 
Solid-state electronics  2010;54(10):1185-1191.
One-dimensional nanostructures such as silicon nanowires (SiNW) are attractive candidates for low power density electronic and optoelectronic devices including sensors. A new simple method for SiNW bulk synthesis[1, 2] is demonstrated in this work, which is inexpensive and uses low toxicity materials, thereby offering a safe, energy efficient and green approach. The method uses low flammability liquid phenylsilanes, offering a safer avenue for SiNW growth compared with using silane gas. A novel, duo-chamber glass vessel is used to create a low-pressure environment where SiNWs are grown through vapor-liquid-solid mechanism using gold nanoparticles as a catalyst. The catalyst decomposes silicon precursor vapors of diphenylsilane and triphenylsilane and precipitates single crystal SiNWs, which appear to grow parallel to the substrate surface. This opens up possibilities for synthesizing nano-junctions amongst wires which is important for the grid architecture of nanoelectronics proposed by Likharev[3]. Even bulk synthesis of SiNW is feasible using sacrificial substrates such as CaCO3 that can be dissolved post-synthesis. Furthermore, by dissolving appropriate dopants in liquid diphenylsilane, a controlled doping of the nanowires is realized without the use of toxic gases and expensive mass flow controllers. Upon boron doping, we observe a characteristic red shift in photoluminescence spectra. In summary, an inexpensive and versatile method for SiNW is presented that makes these exotic materials available to any lab at low cost.
doi:10.1016/j.sse.2010.05.011
PMCID: PMC2919782  PMID: 20711489
Silicon nanowires; dopants; photoluminescence; gold nanoparticles; HR-TEM

Results 1-1 (1)