Search tips
Search criteria

Results 1-18 (18)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Intracellular Expression of PAI-1 Specific Aptamers Alters Breast Cancer Cell Migration, Invasion and Angiogenesis 
PLoS ONE  2016;11(10):e0164288.
Plasminogen activator inhibitor-1 (PAI-1) is elevated in various cancers, where it has been shown to effect cell migration and invasion and angiogenesis. While, PAI-1 is a secreted protein, its intercellular levels are increased in cancer cells. Consequently, intracellular PAI-1 could contribute to cancer progression. While various small molecule inhibitors of PAI-1 are currently being investigated, none specifically target intracellular PAI-1. A class of inhibitors, termed aptamers, has been used effectively in several clinical applications. We previously generated RNA aptamers that target PAI-1 and demonstrated their ability to inhibit extracellular PAI-1. In the current study we explored the effect of these aptamers on intracellular PAI-1. We transiently transfected the PAI-1 specific aptamers into both MDA-MB-231 human breast cancer cells, and human umbilical vein endothelial cells (HUVECs) and studied their effects on cell migration, invasion and angiogenesis. Aptamer expressing MDA-MB-231 cells exhibited a decrease in cell migration and invasion. Additionally, intracellular PAI-1 and urokinase plasminogen activator (uPA) protein levels decreased, while the PAI-1/uPA complex increased. Moreover, a significant decrease in endothelial tube formation in HUVECs transfected with the aptamers was observed. In contrast, conditioned media from aptamer transfected MDA-MB-231 cells displayed a slight pro-angiogenic effect. Collectively, our study shows that expressing functional aptamers inside breast and endothelial cells is feasible and may exhibit therapeutic potential.
PMCID: PMC5068744  PMID: 27755560
2.  MR Molecular Imaging of Tumor Vasculature and Vascular Targets 
Advances in genetics  2010;69:1-30.
Tumor angiogenesis and the ability of cancer cells to induce neovasculature continue to be a fascinating area of research. As the delivery network that provides substrates and nutrients, as well as chemotherapeutic agents to cancer cells, but allows cancer cells to disseminate, the tumor vasculature is richly primed with targets and mechanisms that can be exploited for cancer cure or control. The spatial and temporal heterogeneity of tumor vasculature, and the heterogeneity of response to targeting, make noninvasive imaging essential for understanding the mechanisms of tumor angiogenesis, tracking vascular targeting, and detecting the efficacy of antiangiogenic therapies. With its noninvasive characteristics, exquisite spatial resolution and range of applications, magnetic resonance imaging (MRI) techniques have provided a wealth of functional and molecular information on tumor vasculature in applications spanning from “bench to bedside”. The integration of molecular biology and chemistry to design novel imaging probes ensures the continued evolution of the molecular capabilities of MRI. In this review, we have focused on developments in the characterization of tumor vasculature with functional and molecular MRI.
PMCID: PMC4921063  PMID: 20807600
3.  Multiscale Imaging and Computational Modeling of Blood Flow in the Tumor Vasculature 
Annals of biomedical engineering  2012;40(11):10.1007/s10439-012-0585-5.
The evolution in our understanding of tumor angiogenesis has been the result of pioneering imaging and computational modeling studies spanning the endothelial cell, microvasculature and tissue levels. Many of these primary data on the tumor vasculature are in the form of images from pre-clinical tumor models that provide a wealth of qualitative and quantitative information in many dimensions and across different spatial scales. However, until recently, the visualization of changes in the tumor vasculature across spatial scales remained a challenge due to a lack of techniques for integrating micro- and macroscopic imaging data. Furthermore, the paucity of three-dimensional (3-D) tumor vascular data in conjunction with the challenges in obtaining such data from patients presents a serious hurdle for the development and validation of predictive, multiscale computational models of tumor angiogenesis. In this review, we discuss the development of multiscale models of tumor angiogenesis, new imaging techniques capable of reproducing the 3-D tumor vascular architecture with high fidelity, and the emergence of “image-based models”of tumor blood flow and molecular transport. Collectively, these developments are helping us gain a fundamental understanding of the cellular and molecular regulation of tumor angiogenesis that will benefit the development of new cancer therapies. Eventually, we expect this exciting integration of multiscale imaging and mathematical modeling to have widespread application beyond the tumor vasculature to other diseases involving a pathological vasculature, such as stroke and spinal cord injury.
PMCID: PMC3809908  PMID: 22565817
Angiogenesis; Tumor; Vasculature; Multiscale; Imaging; Mathematical modeling; Computational modeling; Cancer; Tumor microenvironment; Systems biology
4.  Microdialysis Measurement of Intratumoral Temozolomide Concentration after Cediranib, a Pan-VEGF Receptor Tyrosine Kinase Inhibitor, in a U87 Glioma Model 
Combining anti-angiogenesis agents with cytotoxic agents for the treatment of malignant gliomas, may affect the cytotoxic drug distribution by normalizing the blood brain-barrier (BBB). This study examines the intratumoral concentration of temozolomide (TMZ) in the presence and absence of the pan-VEGF receptor tyrosine kinase inhibitor, cediranib.
Seven nude rats bearing U87 intracerebral gliomas had a microdialysis probe centered within the tumor. Ten-days after tumor implantation TMZ(50mg/kg) was given orally. The extracellular fluid (ECF) concentrations of TMZ within the tumor were assessed via microdialysis for six hours following TMZ administration. Cediranib(6 mg/kg) was then given orally, and 12 hours later, TMZ was re-administered with subsequent microdialysis collection. A subset of animals also underwent functional MRI to assess angiogenesis in vivo at post-inoculation days 12 and 21, before and after the cediranib treatment.
After dosing of oral TMZ only, ECF-TMZ mean-Cmax and area under the concentration curve(AUC0-∞) within the tumor were 0.59μg/mL and 1.82μg·hr/mL, respectively. Post-cediranib, ECF-TMZ mean-Cmax and AUC0-∞ were 0.83μg/mL and 3.72±0.61μg·hr/mL within the tumor, respectively. This represented a 1.4-fold (p=0.3) and 2.0-fold (p=0.06) increase in the ECF-TMZCmax and AUC0-∞, respectively, after cediranib administration. In vivo MRI measurements of the various vascular parameters were consistent with a BBB ‘normalization’ profile following cediranib treatment.
In the U87 intracerebral glioma model, within the first day of administration of cediranib, the intratumoral concentrations of TMZ in tumor ECF were slightly, but not statistically significantly, increased when compared to treatment of TMZ alone with radiographic evidence of a normalized BBB.
PMCID: PMC4596243  PMID: 23649683
microdialysis; glioma; angiogenesis; temozolomide; cediranib; vascular normalization
5.  Vasculature-specific MRI reveals differential anti-angiogenic effects of a biomimetic peptide in an orthotopic breast cancer model 
Angiogenesis  2014;18(2):125-136.
Translational vasculature-specific MRI biomarkers were used to measure the effects of a novel anti-angiogenic biomimetic peptide in an orthotopic MDA-MB-231 human triple-negative breast cancer model at an early growth stage. In vivo diffusion-weighted and steady-state susceptibility contrast (SSC) MRI was performed pre-treatment and 2 weeks post-treatment in tumor volume-matched treatment and control groups (n = 5/group). Treatment response was measured by changes in tumor volume; baseline transverse relaxation time (T2); apparent diffusion coefficient (ADC); and SSC-MRI metrics of blood volume, vessel size, and vessel density. These vasculature-specific SSC-MRI biomarkers were compared to the more conventional, non-vascular biomarkers (tumor growth, ADC, and T2) in terms of their sensitivity to anti-angiogenic treatment response. After 2 weeks of peptide treatment, tumor growth inhibition was evident but not yet significant, and the changes in ADC or T2 were not significantly different between treated and control groups. In contrast, the vascular MRI biomarkers revealed a significant anti-angiogenic response to the peptide after 2 weeks—blood volume and vessel size decreased, and vessel density increased in treated tumors; the opposite was seen in control tumors. The MRI results were validated with histology—H&E staining showed no difference in tumor viability between groups, while peptide-treated tumors exhibited decreased vascularity. These results indicate that translational SSC-MRI biomarkers are able to detect the differential effects of anti-angiogenic therapy on the tumor vasculature before significant tumor growth inhibition or changes in tumor viability.
PMCID: PMC4366284  PMID: 25408417
Angiogenesis; Biomarker; Breast cancer; Imaging; Peptide therapy; Susceptibility contrast MRI
6.  In vivo laser speckle imaging reveals microvascular remodeling and hemodynamic changes during wound healing angiogenesis 
Angiogenesis  2011;15(1):87-98.
Laser speckle contrast imaging (LSCI) is a high-resolution and high contrast optical imaging technique often used to characterize hemodynamic changes in short-term physiological experiments. In this study, we demonstrate the utility of LSCI for characterizing microvascular remodeling and hemodynamic changes during wound healing angiogenesis in vivo. A 2 mm diameter hole was made in the mouse ear and the periphery of the wound imaged in vivo using LSCI over 12 days. We were able to visualize and quantify the vascular and perfusion changes that accompanied wound healing in the microenvironment proximal to the wound, and validated these changes with histology. We found that consistent with the stages of wound healing, microvessel density increased during the initial inflammatory phase (i.e., day 0–3), stayed elevated through the tissue formation phase (i.e., until day 7) and returned to baseline during the tissue remodeling phase (i.e., by day 12). Concomitant ‘‘wide area mapping’’ of blood flow revealed that tissue perfusion in the wound periphery initially decreased, gradually increased from day 3–7, and subsided as healing completed. Interestingly, some regions exhibited a reestablishment of tissue perfusion approximately 6 days earlier than the ∼ 18 days usually reported for the long term remodeling phase. The results from this study demonstrate that LSCI is an ideal platform for elucidating in vivo changes in microvascular hemodynamics and angiogenesis, and has the potential to offer invaluable insights in a range of disease models involving abnormal hemodynamics, such as diabetes and tumors.
PMCID: PMC4380186  PMID: 22198198
Angiogenesis; Hemodynamics; Laser speckle imaging; Wound healing; Vasculature
7.  A Bioimage Informatics Based Reconstruction of Breast Tumor Microvasculature with Computational Blood Flow Predictions 
Microvascular research  2013;91:8-21.
Induction of tumor angiogenesis is among the hallmarks of cancer and a driver of metastatic cascade initiation. Recent advances in high-resolution imaging enable highly detailed three-dimensional geometrical representation of the whole-tumor microvascular architecture. This enormous increase in complexity of image-based data necessitates the application of informatics methods for the analysis, mining and reconstruction of these spatial graph data structures. We present a novel methodology that combines ex-vivo high-resolution micro-computed tomography imaging data with a bioimage informatics algorithm to track and reconstruct the whole-tumor vasculature of a human breast cancer model. The reconstructed tumor vascular network is used as an input of a computational model that estimates blood flow in each segment of the tumor microvascular network. This formulation involves a well-established biophysical model and an optimization algorithm that ensures mass balance and detailed monitoring of all the vessels that feed and drain blood from the tumor microvascular network. Perfusion maps for the whole-tumor microvascular network are computed. Morphological and hemodynamic indices from different regions are compared to infer their role in overall tumor perfusion.
PMCID: PMC3977934  PMID: 24342178
8.  Hypoxic Tumor Environments Exhibit Disrupted Collagen I Fibers and Low Macromolecular Transport 
PLoS ONE  2013;8(12):e81869.
Hypoxic tumor microenvironments result in an aggressive phenotype and resistance to therapy that lead to tumor progression, recurrence, and metastasis. While poor vascularization and the resultant inadequate drug delivery are known to contribute to drug resistance, the effect of hypoxia on molecular transport through the interstitium, and the role of the extracellular matrix (ECM) in mediating this transport are unexplored. The dense mesh of fibers present in the ECM can especially influence the movement of macromolecules. Collagen 1 (Col1) fibers form a key component of the ECM in breast cancers. Here we characterized the influence of hypoxia on macromolecular transport in tumors, and the role of Col1 fibers in mediating this transport using an MDA-MB-231 breast cancer xenograft model engineered to express red fluorescent protein under hypoxia. Magnetic resonance imaging of macromolecular transport was combined with second harmonic generation microscopy of Col1 fibers. Hypoxic tumor regions displayed significantly decreased Col1 fiber density and volume, as well as significantly lower macromolecular draining and pooling rates, than normoxic regions. Regions adjacent to severely hypoxic areas revealed higher deposition of Col1 fibers and increased macromolecular transport. These data suggest that Col1 fibers may facilitate macromolecular transport in tumors, and their reduction in hypoxic regions may reduce this transport. Decreased macromolecular transport in hypoxic regions may also contribute to poor drug delivery and tumor recurrence in hypoxic regions. High Col1 fiber density observed around hypoxic regions may facilitate the escape of aggressive cancer cells from hypoxic regions.
PMCID: PMC3861360  PMID: 24349142
10.  Vascular phenotyping of brain tumors using magnetic resonance microscopy (μMRI) 
Abnormal vascular phenotypes have been implicated in neuropathologies ranging from Alzheimer's disease to brain tumors. The development of transgenic mouse models of such diseases has created a crucial need for characterizing the murine neurovasculature. Although histologic techniques are excellent for imaging the microvasculature at submicron resolutions, they offer only limited coverage. It is also challenging to reconstruct the three-dimensional (3D) vasculature and other structures, such as white matter tracts, after tissue sectioning. Here, we describe a novel method for 3D whole-brain mapping of the murine vasculature using magnetic resonance microscopy (μMRI), and its application to a preclinical brain tumor model. The 3D vascular architecture was characterized by six morphologic parameters: vessel length, vessel radius, microvessel density, length per unit volume, fractional blood volume, and tortuosity. Region-of-interest analysis showed significant differences in the vascular phenotype between the tumor and the contralateral brain, as well as between postinoculation day 12 and day 17 tumors. These results unequivocally show the feasibility of using μMRI to characterize the vascular phenotype of brain tumors. Finally, we show that combining these vascular data with coregistered images acquired with diffusion-weighted MRI provides a new tool for investigating the relationship between angiogenesis and concomitant changes in the brain tumor microenvironment.
PMCID: PMC3137465  PMID: 21386855
angiogenesis; brain tumor microenvironment; diffusion tensor imaging; magnetic resonance microscopy; vasculature
11.  Three-Dimensional Imaging of the Mouse Neurovasculature with Magnetic Resonance Microscopy 
PLoS ONE  2011;6(7):e22643.
Knowledge of the three-dimensional (3D) architecture of blood vessels in the brain is crucial because the progression of various neuropathologies ranging from Alzheimer's disease to brain tumors involves anomalous blood vessels. The challenges in obtaining such data from patients, in conjunction with development of mouse models of neuropathology, have made the murine brain indispensable for investigating disease induced neurovascular changes. Here we describe a novel method for “whole brain” 3D mapping of murine neurovasculature using magnetic resonance microscopy (μMRI). This approach preserves the vascular and white matter tract architecture, and can be combined with complementary MRI contrast mechanisms such as diffusion tensor imaging (DTI) to examine the interplay between the vasculature and white matter reorganization that often characterizes neuropathologies. Following validation with micro computed tomography (μCT) and optical microscopy, we demonstrate the utility of this method by: (i) combined 3D imaging of angiogenesis and white matter reorganization in both, invasive and non-invasive brain tumor models; (ii) characterizing the morphological heterogeneity of the vascular phenotype in the murine brain; and (iii) conducting “multi-scale” imaging of brain tumor angiogenesis, wherein we directly compared in vivo MRI blood volume measurements with ex vivo vasculature data.
PMCID: PMC3144917  PMID: 21818357
13.  Applications of molecular MRI and optical imaging in cancer 
Future medicinal chemistry  2010;2(6):975-988.
Some of the most exciting advances in molecular-functional imaging of cancer are occurring at the interface between chemistry and imaging. Several of these advances have occurred through the development of novel imaging probes that report on molecular pathways, the tumor micro-environment and the response of tumors to treatment; as well as through novel image-guided platforms such as nanoparticles and nanovesicles that deliver therapeutic agents against specific targets and pathways. Cancer cells have a remarkable ability to evade destruction despite the armamentarium of drugs currently available. While these drugs can destroy cancer cells, normal tissue toxicity is a major limiting factor, a problem further compounded by poor drug delivery. One major challenge for chemistry continues to be to eliminate cancer cells without damaging normal tissues. Here we have selected examples of MRI and optical imaging, to demonstrate how integrating imaging with novel probes can facilitate the successful treatment of this multifaceted disease.
PMCID: PMC2902367  PMID: 20634999
14.  Noninvasive Multi-parametric Imaging of Metastasis-Permissive Microenvironments in a Human Prostate Cancer Xenograft 
Cancer research  2009;69(22):8822-8829.
Metastasis continues to be one of the major causes of mortality from prostate cancer. Since human malignant cell lines metastasize more readily from orthotopic sites than from heterotopic sites, to identify metastasis-permissive tumor microenvironments, we used noninvasive imaging to compare the in vivo vascular, metabolic and physiological characteristics of a human prostate cancer xenograft implanted orthotopically in the prostate or subcutaneously in the flank. Hypoxia was detected in these xenografts by placing an enhanced green fluorescent protein (EGFP) optical reporter under the control of a hypoxia response element (HRE). A multi-parametric analysis of hypoxia, extracellular pH (pHe), vascularization and metabolism provided a characterization of environments that are permissive for metastasis to occur. We found that orthotopic tumors, which metastasized more easily, were characterized by higher vascular volume, permeability, and total choline, and a more acidic pHe. Interestingly, metastatic deposits in the lymph nodes as well as cancer cells in ascites fluid were found to be hypoxic, explaining in part, the refractory nature of metastatic disease. These results also provide the basis for clinically translatable noninvasive imaging markers for predicting metastatic risk in prostate cancer.
PMCID: PMC2783669  PMID: 19861534
prostate cancer; hypoxia; vascularization; choline metabolism; pHe; magnetic resonance spectroscopy and imaging; metastasis
15.  Molecular Imaging of Cancer: Applications of Magnetic Resonance Methods 
Cancer is a complex disease exhibiting a host of phenotypic diversities. Noninvasive multinuclear magnetic resonance imaging (MRI) and spectroscopic imaging (MRSI) provide an array of capabilities to characterize and understand several of the vascular, metabolic, and physiological characteristics unique to cancer. The availability of targeted contrast agents has widened the scope of MR techniques to include the detection of receptor and gene expression. In this paper, we have highlighted the application of several MR techniques in imaging and understanding cancer.
PMCID: PMC2749700  PMID: 19779604
Cancer; metabolism; molecular imaging; magnetic resonance imaging (MRI); magnetic resonance spectroscopic imaging (MRSI); receptor expression; vascular imaging
16.  A Novel Technique for Modeling Susceptibility-Based Contrast Mechanisms for Arbitrary Microvascular Geometries: The Finite Perturber Method 
NeuroImage  2008;40(3):1130-1143.
Recently, we demonstrated that vessel geometry is a significant determinant of susceptibility-induced contrast in MRI. This is especially relevant for susceptibility-contrast enhanced MRI of tumors with their characteristically abnormal vessel morphology. In order to better understand the biophysics of this contrast mechanism, it is of interest to model how various factors, including microvessel morphology contribute to the measured MR signal, and was the primary motivation for developing a novel computer modeling approach called the Finite Perturber Method (FPM). The FPM circumvents the limitations of traditional fixed-geometry approaches, and enables us to study susceptibility-induced contrast arising from arbitrary microvascular morphologies in 3D, such as those typically observed with brain tumor angiogenesis. Here we describe this new modeling methodology and some of its applications. The excellent agreement of the FPM with theory and the extant susceptibility modeling data, coupled with its computational efficiency demonstrates its potential to transform our understanding of the factors that engender susceptibility contrast in MRI.
PMCID: PMC2408763  PMID: 18308587
Dynamic susceptibility; contrast; arbitrary geometry; microvasculature; tumor angiogenesis; BOLD fMRI
17.  Antiangiogenic effects of dexamethasone in 9L gliosarcoma assessed by MRI cerebral blood volume maps. 
Neuro-Oncology  2003;5(4):235-243.
Depending on dose, dexamethasone has been shown to inhibit or stimulate growth of rat 9L gliosarcoma and decrease the expression of vascular endothelial growth factor (VEGF), an important mediator of tumor-associated angiogenesis. We demonstrate, by constructing relative cerebral blood volume (rCBV) maps with MRI, that dexamethasone also decreases total blood volume while increasing microvascular blood volume in Fischer rats bearing intracranial 9L gliosarcoma. Animals were inoculated with 1 x 10(5) 9L gliosarcoma tumor cells. On days 10-14 after tumor cell inoculation, animals were intra-peritoneally injected with dexamethasone (3 mg/kg) over 5 days. MRI-derived gradient echo (GE) and spin-echo (SE) rCBV maps were created to demonstrate total vasculature (GE) and microvasculature (SE). After MRI studies were performed, the rat's vasculature was perfused with a latex compound. Total vessel volume and diameters were assessed by microscopy. Dexamethasone decreased the tumor-enhancing area of postcontrast T1-weighted images (P < 0.0001) and total tumor volume(P = 0.0085). In addition, there was a greater than 50% decrease in GE rCBV (total vasculature) (P = 0.007) as well as a significant decrease in total fractional blood volume, as validated by histology (P = 0.0007). Conversely, there was an increase in SE rCBV signal (microvasculature) in animals treated with dexamethasone (P = 0.05), which was consistent with microscopy (P < 0.0001). These data demonstrate that (1) dexamethasone selectively treats tumor vasculature, suggesting a vessel-size selective effect and (2) MRI-derived rCBV is a noninvasive technique that can be used to evaluate changes in blood volume and vascular morphology.
PMCID: PMC1920679  PMID: 14565159
18.  Extracellular Acidification Alters Lysosomal Trafficking in Human Breast Cancer Cells1 
Neoplasia (New York, N.Y.)  2003;5(6):533-545.
Cancer cells invade by secreting degradative enzymes, which are sequestered in lysosomal vesicles. In this study, the impact of an acidic extracellular environment on lysosome size, number, and distance from the nucleus in human mammary epithelial cells (HMECs) and breast cancer cells of different degrees of malignancy was characterized because the physiological microenvironment of tumors is frequently characterized by extracellular acidity. An acidic extracellular pH (pHe) resulted in a distinct shift of lysosomes from the perinuclear region to the cell periphery irrespective of the HMECs' degree of malignancy. With decreasing pH, larger lysosomal vesicles were observed more frequently in highly metastatic breast cancer cells, whereas smaller lysosomes were observed in poorly metastatic breast cancer cells and HMECs. The number of lysosomes decreased with acidic pH values. The displacement of lysosomes to the cell periphery driven by extracellular acidosis may facilitate exocytosis of these lysosomes and increase secretion of degradative enzymes. Filopodia formations, which were observed more frequently in highly metastatic breast cancer cells maintained at acidic pHe, may also contribute to invasion.
PMCID: PMC1502575  PMID: 14965446
Breast cancer; metastasis; fluorescence microscopy; lysosome; trafficking

Results 1-18 (18)