PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Ecological Genomics of Marine Picocyanobacteria†  
Summary: Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus numerically dominate the picophytoplankton of the world ocean, making a key contribution to global primary production. Prochlorococcus was isolated around 20 years ago and is probably the most abundant photosynthetic organism on Earth. The genus comprises specific ecotypes which are phylogenetically distinct and differ markedly in their photophysiology, allowing growth over a broad range of light and nutrient conditions within the 45°N to 40°S latitudinal belt that they occupy. Synechococcus and Prochlorococcus are closely related, together forming a discrete picophytoplankton clade, but are distinguishable by their possession of dissimilar light-harvesting apparatuses and differences in cell size and elemental composition. Synechococcus strains have a ubiquitous oceanic distribution compared to that of Prochlorococcus strains and are characterized by phylogenetically discrete lineages with a wide range of pigmentation. In this review, we put our current knowledge of marine picocyanobacterial genomics into an environmental context and present previously unpublished genomic information arising from extensive genomic comparisons in order to provide insights into the adaptations of these marine microbes to their environment and how they are reflected at the genomic level.
doi:10.1128/MMBR.00035-08
PMCID: PMC2698417  PMID: 19487728
2.  Diel Expression of Cell Cycle-Related Genes in Synchronized Cultures of Prochlorococcus sp. Strain PCC 9511 
Journal of Bacteriology  2001;183(3):915-920.
The cell cycle of the chlorophyll b-possessing marine cyanobacterium Prochlorococcus is highly synchronized under natural conditions. To understand the underlying molecular mechanisms we cloned and sequenced dnaA and ftsZ, two key cell cycle-associated genes, and studied their expression. An axenic culture of Prochlorococcus sp. strain PCC 9511 was grown in a turbidostat with a 12 h–12 h light-dark cycle for 2 weeks. During the light periods, a dynamic light regimen was used in order to simulate the natural conditions found in the upper layers of the world's oceans. This treatment resulted in strong cell cycle synchronization that was monitored by flow cytometry. The steady-state mRNA levels of dnaA and ftsZ were monitored at 4-h intervals during four consecutive division cycles. Both genes exhibited clear diel expression patterns with mRNA maxima during the replication (S) phase. Western blot experiments indicated that the peak of FtsZ concentration occurred at night, i.e., at the time of cell division. Thus, the transcript accumulation of genes involved in replication and division is coordinated in Prochlorococcus sp. strain PCC 9511 and might be crucial for determining the timing of DNA replication and cell division.
doi:10.1128/JB.183.3.915-920.2001
PMCID: PMC94958  PMID: 11208789
3.  Prochlorococcus, a Marine Photosynthetic Prokaryote of Global Significance 
The minute photosynthetic prokaryote Prochlorococcus, which was discovered about 10 years ago, has proven exceptional from several standpoints. Its tiny size (0.5 to 0.7 μm in diameter) makes it the smallest known photosynthetic organism. Its ubiquity within the 40°S to 40°N latitudinal band of oceans and its occurrence at high density from the surface down to depths of 200 m make it presumably the most abundant photosynthetic organism on Earth. Prochlorococcus typically divides once a day in the subsurface layer of oligotrophic areas, where it dominates the photosynthetic biomass. It also possesses a remarkable pigment complement which includes divinyl derivatives of chlorophyll a (Chl a) and Chl b, the so-called Chl a2 and Chl b2, and, in some strains, small amounts of a new type of phycoerythrin. Phylogenetically, Prochlorococcus has also proven fascinating. Recent studies suggest that it evolved from an ancestral cyanobacterium by reducing its cell and genome sizes and by recruiting a protein originally synthesized under conditions of iron depletion to build a reduced antenna system as a replacement for large phycobilisomes. Environmental constraints clearly played a predominant role in Prochlorococcus evolution. Its tiny size is an advantage for its adaptation to nutrient-deprived environments. Furthermore, genetically distinct ecotypes, with different antenna systems and ecophysiological characteristics, are present at depth and in surface waters. This vertical species variation has allowed Prochlorococcus to adapt to the natural light gradient occurring in the upper layer of oceans. The present review critically assesses the basic knowledge acquired about Prochlorococcus both in the ocean and in the laboratory.
PMCID: PMC98958  PMID: 10066832
4.  Enumeration and Cell Cycle Analysis of Natural Populations of Marine Picoplankton by Flow Cytometry Using the Nucleic Acid Stain SYBR Green I 
The novel dye SYBR Green I binds specifically to nucleic acids and can be excited by blue light (488-nm wavelength). Cell concentrations of prokaryotes measured in marine samples with this dye on a low-cost compact flow cytometer are comparable to those obtained with the UV-excited stain Hoechst 33342 (bis-benzimide) on an expensive flow cytometer with a water-cooled laser. In contrast to TOTO-1 and TO-PRO-1, SYBR Green I has the advantage of clearly discriminating both heterotrophic bacteria and autotrophic Prochlorococcus cells, even in oligotrophic waters. As with TOTO-1 and TO-PRO-1, two groups of heterotrophic bacteria (B-I and B-II-like types) can be distinguished. Moreover, the resolution of DNA distribution obtained with SYBR Green I is similar to that obtained with Hoechst 33342 and permits the analysis of the cell cycle of photosynthetic prokaryotes over the whole water column.
PMCID: PMC1389098  PMID: 16535483
5.  Application of the novel nucleic acid dyes YOYO-1, YO-PRO-1, and PicoGreen for flow cytometric analysis of marine prokaryotes. 
Novel blue light-excited fluorescent dyes for nucleic acids (YOYO-1, YO-PRO-1, and PicoGreen) were tested on cultures of Escherichia coli and of a variety of marine prokaryotes. Results of flow cytometric DNA analyses were compared with those obtained with the UV-excited dyes bis-benzimide Hoechst 33342 or 4', 6-diamidino-2-phenylindole (DAPI). YOYO-1, YO-PRO-1, and PicoGreen can be used only on aldehyde-fixed cells and need to be supplemented with cofactors such as potassium, citrate, or EDTA. They are highly sensitive to ionic strength. Consequently, seawater culture samples cannot be stained directly with these dyes and require at least a 10-fold dilution with distilled water to obtain reliable fluorescence signals. After treatment with RNase, coefficients of variation for the G1 peak of the DNA distributions of the different strains tested with YOYO-1 or PicoGreen indicated in general an improvement over Hoechst 33342 staining. These novel dyes can be used to enumerate prokaryotic cells by flow cytometry, as demonstrated with E. coli. However, their sensitivity to ionic strength makes them unsuitable for cell cycle analysis in natural samples.
PMCID: PMC167939  PMID: 8633863
6.  Fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes to identify small phytoplankton by flow cytometry. 
Because of their tiny size (0.2 to 2 microns), oceanic picophytoplanktonic cells (either cultured strains or natural communities) are difficult to identify, and some basic questions concerning their taxonomy, physiology, and ecology are still largely unanswered. The present study was designed to test the suitability of in situ hybridization with rRNA fluorescent probes detected by flow cytometry for the identification of small photosynthetic eukaryotes. Oligonucleotide probes targeted against regions of the 18S rRNAs of Chlorophyta lineage (CHLO probe) and of non-Chlorophyta (NCHLO probe) algal species were designed. The CHLO and NCHLO probes, which differed by a single nucleotide, allowed discrimination of chlorophyte from nonchlorophyte cultured strains. The sensitivity of each probe was dependent upon the size of the cells and upon their growth stage. The mean fluorescence was 8 to 80 times higher for specifically labeled than for nonspecifically labeled cells in exponential growth phase, but it decreased sharply in stationary phase. Such taxon-specific probes should increase the applicability of flow cytometry for the rapid identification of cultured pico- and nanoplanktonic strains, especially those that lack taxonomically useful morphological features.
PMCID: PMC167522  PMID: 7618862

Results 1-6 (6)