PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (36)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  Neural correlates of conceptual object priming in young and older adults: An event-related fMRI study 
Neurobiology of aging  2012;34(4):1254-1264.
In this event-related fMRI study, we investigated age-related differences in brain activity associated with conceptual repetition priming in young and older adults. Participants performed a speeded “living/non-living” classification task with three repetitions of familiar objects. Both young and older adults showed a similar magnitude of behavioral priming to repeated objects and evidencing repetition-related activation reductions in fusiform gyrus, superior occipital, middle and inferior temporal cortex, as well as inferior frontal and insula regions. The neural priming effect in young adults was extensive and continued through both the second and third stimulus repetitions, whereas neural priming in older adults was markedly attenuated and reached floor at the second repetition. In young adults, greater neural priming in multiple brain regions correlated with greater behavioral facilitation whereas in older adults, only activation reduction in the left inferior frontal correlated with faster behavioral responses. These findings provide evidence for altered neural priming in older adults despite preserved behavioral priming, and suggest the possibility that age-invariant behavioral priming is observed as a result of more sustained neural processing of stimuli in older adults which may be a form of compensatory neural activity.
doi:10.1016/j.neurobiolaging.2012.09.019
PMCID: PMC4028122  PMID: 23102512
Aging; fMRI; repetition priming; priming; implicit memory; recognition
2.  Risk Factors for β-Amyloid Deposition in Healthy Aging 
JAMA neurology  2013;70(5):600-606.
Importance
Identifying risk factors for increased β-amyloid (Aβ) deposition is important for targeting individuals most at risk for developing Alzheimer disease and informing clinical practice concerning prevention and early detection.
Objective
To investigate risk factors for Aβ deposition in cognitively healthy middle-aged and older adults. Specifically, we hypothesized that individuals with a vascular risk factor such as hypertension, in combination with a genetic risk factor for Alzheimer disease (apolipoprotein E ε4 allele), would show greater amyloid burden than those without such risk.
Design
Cross-sectional study.
Setting
General community.
Participants
One hundred eighteen well-screened and cognitively normal adults, aged 47 to 89 years. Participants were classified in the hypertension group if they reported a medical diagnosis of hypertension or if blood pressure exceeded 140 mm Hg systolic/90 mm Hg diastolic, as measured across 7 occasions at the time of study.
Intervention
Participants underwent Aβ positron emission tomography imaging with radiotracer fluorine 18–labeled florbetapir. Participants were genotyped for apolipoprotein E and were classified as ε4+ or ε4−.
Main Outcome Measure
Amyloid burden.
Results
Participants in the hypertension group with at least 1 ε4 allele showed significantly greater amyloid burden than those with only 1 risk factor or no risk factors. Furthermore, increased pulse pressure was strongly associated with increased mean cortical amyloid level for subjects with at least 1 ε4 allele.
Conclusions and Relevance
Vascular disease is a prevalent age-related condition that is highly responsive to both behavioral modification and medical treatment. Proper control and prevention of risk factors such as hypertension earlier in the life span may be one potential mechanism to ameliorate or delay neuropathological brain changes with aging.
doi:10.1001/jamaneurol.2013.1342
PMCID: PMC3968915  PMID: 23553344
3.  Culture Wires the Brain: A Cognitive Neuroscience Perspective 
There is clear evidence that sustained experiences may affect both brain structure and function. Thus, it is quite reasonable to posit that sustained exposure to a set of cultural experiences and behavioral practices will affect neural structure and function. The burgeoning field of cultural psychology has often demonstrated the subtle differences in the way individuals process information—differences that appear to be a product of cultural experiences. We review evidence that the collectivistic and individualistic biases of East Asian and Western cultures, respectively, affect neural structure and function. We conclude that there is limited evidence that cultural experiences affect brain structure and considerably more evidence that neural function is affected by culture, particularly activations in ventral visual cortex—areas associated with perceptual processing.
doi:10.1177/1745691610374591
PMCID: PMC3409833  PMID: 22866061
fMRI; fMR-A; eye movement; cultural differences; ventral visual cortex; object; context; age
4.  An fMRI study of episodic encoding across the lifespan: Changes in subsequent memory effects are evident by middle-age 
Neuropsychologia  2012;51(3):448-456.
Although it is well-documented that there are age differences between young and older adults in neural activity associated with successful memory formation (positive subsequent memory effects), little is known about how this activation differs across the lifespan, as few studies have included middle-aged adults. The present study investigated the effect of age on neural activity during episodic encoding using a cross-sectional lifespan sample (20–79 years old, N=192) from the Dallas Lifespan Brain Study. We report four major findings. First, in a contrast of remembered vs. forgotten items, a decrease in neural activity occurred with age in bilateral occipito-temporo-parietal regions. Second, when we contrasted forgotten with remembered items (negative subsequent memory), the primary difference was found between middle and older ages. Third, there was evidence for age equivalence in hippocampal regions, congruent with previous studies. Finally, low-memory-performers showed negative subsequent memory differences by middle age, whereas high memory performers did not demonstrate these differences until older age. Taken together, these findings delineate the importance of a lifespan approach to understanding neurocognitive aging and, in particular, the importance of a middle-age sample in revealing different trajectories.
doi:10.1016/j.neuropsychologia.2012.11.025
PMCID: PMC3563761  PMID: 23219676
aging; episodic memory; encoding; fMRI; lifespan; middle-age
5.  Culture-related differences in default network activity during visuo-spatial judgments 
Studies on culture-related differences in cognition have shown that Westerners attend more to object-related information, whereas East Asians attend more to contextual information. Neural correlates of these different culture-related visual processing styles have been reported in the ventral-visual and fronto-parietal regions. We conducted an fMRI study of East Asians and Westerners on a visuospatial judgment task that involved relative, contextual judgments, which are typically more challenging for Westerners. Participants judged the relative distances between a dot and a line in visual stimuli during task blocks and alternated finger presses during control blocks. Behaviorally, East Asians responded faster than Westerners, reflecting greater ease of the task for East Asians. In response to the greater task difficulty, Westerners showed greater neural engagement compared to East Asians in frontal, parietal, and occipital areas. Moreover, Westerners also showed greater suppression of the default network—a brain network that is suppressed under condition of high cognitive challenge. This study demonstrates for the first time that cultural differences in visual attention during a cognitive task are manifested both by differences in activation in fronto-parietal regions as well as suppression in default regions.
doi:10.1093/scan/nsr077
PMCID: PMC3575716  PMID: 22114080
culture; default network; fMRI; visuo-spatial processing
6.  A Comparison of Physiologic Modulators of fMRI Signals 
Human brain mapping  2012;34(9):2078-2088.
One of the main obstacles in quantitative interpretation of functional magnetic resonance imaging (fMRI) signal is that this signal is influenced by non-neural factors such as vascular properties of the brain, which effectively increases signal variability. One approach to account for non-neural components is to identify and measure these confounding factors and to include them as covariates in data analysis or interpretation. Previously, several research groups have independently identified four potential physiologic modulators of fMRI signals, including baseline venous oxygenation (Yv), cerebrovascular reactivity (CVR), resting state BOLD fluctuation amplitude (RSFA), and baseline cerebral blood flow (CBF). This study sought to directly compare the modulation effects of these indices in the same fMRI session. The physiologic parameters were measured with techniques comparable with those used in the previous studies except for CBF, which was determined globally with a velocity-based phase-contrast MRI (instead of arterial-spin-labeling MRI). Using an event-related, scene-categorization fMRI task, we showed that the fMRI signal amplitude was positively correlated with CVR (P < 0.0001) and RSFA (P = 0.002), while negatively correlated with baseline Yv (P < 0.0001). The fMRI-CBF correlation did not reach significance, although the (negative) sign of the correlation was consistent with the earlier study. Furthermore, among the physiologic modulators themselves, significant correlations were observed between baseline Yv and baseline CBF (P = 0.01), and between CVR and RSFA (P = 0.05), suggesting that some of the modulators may partly be of similar physiologic origins. These observations as well as findings in recent literature suggest that additional measurement of physiologic modulator(s) in an fMRI session may provide a practical approach to control for inter-subject variations and to improve the ability of fMRI in detecting disease or medication related differences.
doi:10.1002/hbm.22053
PMCID: PMC3432155  PMID: 22461234
BOLD fMRI; normalization; venous oxygenation; cerebrovascular reactivity; resting state BOLD fluctuation; cerebral blood flow
7.  Effects of Beta-Amyloid Accumulation on Neural Function During Encoding across the Adult Lifespan 
Neuroimage  2012;62(1):1-8.
Limited functional imaging evidence suggests increased beta-amyloid deposition is associated with alterations in brain function, even in healthy older adults. However, the majority of these findings report on resting-state activity or functional connectivity in adults over age 60. Much less is known about the impact of beta-amyloid on neural activations during cognitive task performance, or the impact of amyloid in young and middle-aged adults. The current study measured beta-amyloid burden from PET imaging using18Florbetapir, in a large continuous age sample of highly-screened, healthy adults (N = 137; aged 30–89 years). The same participants also underwent fMRI scanning, performing a memory encoding task. Using both beta-amyloid burden and age as continuous predictors of encoding activity, we report a dose-response relationship of beta-amyloid load to neural function, beyond the effects of age. Specifically, individuals with greater amyloid burden evidence less neural activation in bilateral dorsolateral prefrontal cortex, a region important for memory encoding, as well as reduced neural modulation in areas associated with default network activity: bilateral superior/medial frontal and lateral temporal cortex. Importantly, this reduction of both activation and suppression as a function of amyloid load was found across the lifespan, even in young- and middle-aged individuals. Moreover, this frontal and temporal amyloid-reduced activation/suppression was associated with poorer processing speed, verbal fluency, and fluid reasoning in a subgroup of individuals with elevated amyloid, suggesting that it is detrimental, rather than compensatory in nature.
doi:10.1016/j.neuroimage.2012.03.077
PMCID: PMC3381050  PMID: 22569063
8.  The aging mind: neuroplasticity in response to cognitive training 
Is it possible to enhance neural and cognitive function with cognitive training techniques? Can we delay age-related decline in cognitive function with interventions and stave off Alzheimer's disease? Does an aged brain really have the capacity to change in response to stimulation? In the present paper, we consider the neuroplasticity of the aging brain, that is, the brain's ability to increase capacity in response to sustained experience. We argue that, although there is some neural deterioration that occurs with age, the brain has the capacity to increase neural activity and develop neural scaffolding to regulate cognitive function. We suggest that increase in neural volume in response to cognitive training or experience is a clear indicator of change, but that changes in activation in response to cognitive training may be evidence of strategy change rather than indicative of neural plasticity. We note that the effect of cognitive training is surprisingly durable over time, but that the evidence that training effects transfer to other cognitive domains is relatively limited. We review evidence which suggests that engagement in an environment that requires sustained cognitive effort may facilitate cognitive function.
PMCID: PMC3622463  PMID: 23576894
neuroplasticity; scaffolding; cognitive training; cognitive reserve; engagement
9.  Sustained happiness? Lack of repetition suppression in right-ventral visual cortex for happy faces 
Emotional stimuli have been shown to preferentially engage initial attention but their sustained effects on neural processing remain largely unknown. The present study evaluated whether emotional faces engage sustained neural processing by examining the attenuation of neural repetition suppression to repeated emotional faces. Repetition suppression of neural function refers to the general reduction of neural activity when processing a repeated stimulus. Preferential processing of emotional face stimuli, however, should elicit sustained neural processing such that repetition suppression to repeated emotional faces is attenuated relative to faces with no emotional content. We measured the reduction of functional magnetic resonance imaging signals associated with immediate repetition of neutral, angry and happy faces. Whereas neutral faces elicited the greatest suppression in ventral visual cortex, followed by angry faces, repetition suppression was the most attenuated for happy faces. Indeed, happy faces showed almost no repetition suppression in part of the right-inferior occipital and fusiform gyri, which play an important role in face-identity processing. Our findings suggest that happy faces are associated with sustained visual encoding of face identity and thereby assist in the formation of more elaborate representations of the faces, congruent with findings in the behavioral literature.
doi:10.1093/scan/nsq058
PMCID: PMC3150853  PMID: 20584720
emotion; faces; repetition suppression; sustained processing; ventral visual cortex
10.  Alterations in Cerebral Metabolic Rate and Blood Supply across the Adult Lifespan 
Cerebral Cortex (New York, NY)  2010;21(6):1426-1434.
With age, the brain undergoes comprehensive changes in its function and physiology. Cerebral metabolism and blood supply are among the key physiologic processes supporting the daily function of the brain and may play an important role in age-related cognitive decline. Using MRI, it is now possible to make quantitative assessment of these parameters in a noninvasive manner. In the present study, we concurrently measured cerebral metabolic rate of oxygen (CMRO2), cerebral blood flow (CBF), and venous blood oxygenation in a well-characterized healthy adult cohort from 20 to 89 years old (N = 232). Our data showed that CMRO2 increased significantly with age, while CBF decreased with age. This combination of higher demand and diminished supply resulted in a reduction of venous blood oxygenation with age. Regional CBF was also determined, and it was found that the spatial pattern of CBF decline was heterogeneous across the brain with prefrontal cortex, insular cortex, and caudate being the most affected regions. Aside from the resting state parameters, the blood vessels’ ability to dilate, measured by cerebrovascular reactivity to 5% CO2 inhalation, was assessed and was reduced with age, the extent of which was more prominent than that of the resting state CBF.
doi:10.1093/cercor/bhq224
PMCID: PMC3097991  PMID: 21051551
aging; blood oxygenation; cerebral blood flow; cerebral metabolism; cerebrovascular reactivity; MRI
11.  Neural Broadening or Neural Attenuation? Investigating Age-Related Dedifferentiation in the Face Network in a Large Lifespan Sample 
Previous studies have found that cortical responses to different stimuli become less distinctive as people get older. This age-related dedifferentiation may reflect the broadening of the tuning curves of category-selective neurons (broadening hypothesis) or it may be due to decreased activation of category-selective neurons (attenuation hypothesis). In this study, we evaluated these hypotheses in the context of the face-selective neural network. Over 300 participants, ranging in age from 20 to 89 years, viewed images of faces, houses, and control stimuli in a functional magnetic resonance imaging session. Regions within the core face network and extended face network were identified in individual subjects. Activation in many of these regions became significantly less face-selective with age, confirming previous reports of age-related dedifferentiation. Consistent with the broadening hypothesis, this dedifferentiation in the fusiform face area (FFA) was driven by increased activation to houses. In contrast, dedifferentiation in the extended face network was driven by decreased activation to faces, consistent with the attenuation hypothesis. These results suggest that age-related dedifferentiation reflects distinct processes in different brain areas. More specifically, dedifferentiation in FFA activity may be due to broadening of the tuning curves for face-selective neurons, while dedifferentiation in the extended face network reflects reduced face- or emotion-selective activity.
doi:10.1523/JNEUROSCI.4494-11.2012
PMCID: PMC3361757  PMID: 22323727
12.  The Adaptive Brain: Aging and Neurocognitive Scaffolding 
Annual Review of Psychology  2009;60:173-196.
There are declines with age in speed of processing, working memory, inhibitory function, and long-term memory, as well as decreases in brain structure size and white matter integrity. In the face of these decreases, functional imaging studies have demonstrated, somewhat surprisingly, reliable increases in prefrontal activation. To account for these joint phenomena, we propose the scaffolding theory of aging and cognition (STAC). STAC provides an integrative view of the aging mind, suggesting that pervasive increased frontal activation with age is a marker of an adaptive brain that engages in compensatory scaffolding in response to the challenges posed by declining neural structures and function. Scaffolding is a normal process present across the lifespan that involves use and development of complementary, alternative neural circuits to achieve a particular cognitive goal. Scaffolding is protective of cognitive function in the aging brain, and available evidence suggests that the ability to use this mechanism is strengthened by cognitive engagement, exercise, and low levels of default network engagement.
doi:10.1146/annurev.psych.59.103006.093656
PMCID: PMC3359129  PMID: 19035823
default network; dedifferentiation; hippocampus; compensation; cognitive reserve; frontal activation
13.  Neural Dissociation of Number from Letter Recognition and Its Relationship to Parietal Numerical Processing 
The visual recognition of letters dissociates from the recognition of numbers at both the behavioral and neural level. In this article, using fMRI, we investigate whether the visual recognition of numbers dissociates from letters, thereby establishing a double dissociation. In Experiment 1, participants viewed strings of consonants and Arabic numerals. We found that letters activated the left midfusiform and inferior temporal gyri more than numbers, replicating previous studies, whereas numbers activated a right lateral occipital area more than letters at the group level. Because the distinction between letters and numbers is culturally defined and relatively arbitrary, this double dissociation provides some of the strongest evidence to date that a neural dissociation can emerge as a result of experience. We then investigated a potential source of the observed neural dissociation. Specifically, we tested the hypothesis that lateralization of visual number recognition depends on lateralization of higher-order numerical processing. In Experiment 2, the same participants performed addition, subtraction, and counting on arrays of nonsymbolic stimuli varying in numerosity, which produced neural activity in and around the intraparietal sulcus, a region associated with higher-order numerical processing. We found that individual differences in the lateralization of number activity in visual cortex could be explained by individual differences in the lateralization of numerical processing in parietal cortex, suggesting a functional relationship between the two regions. Together, these results demonstrate a neural double dissociation between letter and number recognition and suggest that higher-level numerical processing in parietal cortex may influence the neural organization of number processing in visual cortex.
doi:10.1162/jocn_a_00085
PMCID: PMC3357212  PMID: 21736455
14.  Neuroplasticity and cognitive aging: The scaffolding theory of aging and cognition 
A recent proposal called the Scaffolding Theory of Cognitive Aging (STAC) postulates that functional changes with aging are part of a lifespan process of compensatory cognitive scaffolding that is an attempt to alleviate the cognitive declines associated with aging. Indeed, behavioral studies have shown that aging is associated with both decline as well as preservation of selective cognitive abilities. Similarly, neuroimaging studies have revealed selective changes in the aging brain that reflect neural decline as well as compensatory neural recruitment. While aging is associated with reductions in cortical thickness, white-matter integrity, dopaminergic activity, and functional engagement in posterior brain regions such as the hippocampus and occipital areas, there are compensatory increases in frontal functional engagement that correlate with better behavioral performance in older adults. In this review, we discuss these age-related behavioral and brain findings that support the STAC model of cognitive scaffolding and additionally integrate the findings on neuroplasticity as a compensatory response in the aging brain. As such, we also examine the impact of external experiences in facilitating neuroplasticity in older adults. Finally, having laid the foundation for STAC, we briefly describe a proposed intervention trial (The Synapse Program) designed to evaluate the behavioral and neural impact of engagement in lifestyle activities that facilitates successful cognitive scaffolding using a controlled experiment where older adult participants are randomly assigned to different conditions of engagement.
doi:10.3233/RNN-2009-0493
PMCID: PMC3355626  PMID: 19847066
15.  Both left and right posterior parietal activations contribute to compensatory processes in normal aging 
Neuropsychologia  2011;50(1):55-66.
Older adults often exhibit greater brain activation in prefrontal cortex compared to younger adults, and there is some evidence that this increased activation compensates for age-related neural degradation that would otherwise adversely affect cognitive performance. Less is known about aging and compensatory recruitment in the parietal cortex. In this event-related functional magnetic resonance imaging study, we presented healthy young and old participants with two Stroop-like tasks (number magnitude and physical size). In young, the number magnitude task activated right parietal cortex and the physical size task activated left parietal cortex. In older adults, we observed contralateral parietal recruitment that depended on the task: in the number magnitude task older participants recruited left posterior parietal cortex (in addition to the right parietal activity observed in young) while in the physical size task they recruited right (in addition to left) posterior parietal cortex. In both cases, the additional parietal activity was associated with better performance suggesting that it played a compensatory role. Older adults also recruited left prefrontal cortex during both tasks and this common activation was also associated with better performance. The results provide evidence for task-specific compensatory recruitment in parietal cortex as well as task-independent compensatory recruitment in prefrontal cortex in normal aging.
doi:10.1016/j.neuropsychologia.2011.10.022
PMCID: PMC3355662  PMID: 22063904
Age-related compensation; Event-related fMRI; Interference resolution; Posterior parietal cortex; Prefrontal cortex
16.  Age differences in neural distinctiveness revealed by multi-voxel pattern analysis 
NeuroImage  2010;56(2):736-743.
Current theories of cognitive aging argue that neural representations become less distinctive in old age, a phenomenon known as dedifferentiation. The present study used multi-voxel pattern analysis (MVPA) to measure age differences in the distinctiveness of distributed patterns of neural activation evoked by different categories of visual images. We found that neural activation patterns within the ventral visual cortex were less distinctive among older adults. Further, we report that age differences in neural distinctiveness extend beyond the ventral visual cortex: older adults also showed decreased distinctiveness in early visual cortex, inferior parietal cortex, and medial and lateral prefrontal cortex. Neural distinctiveness scores in early and late visual areas were highly correlated, suggesting shared mechanisms of age-related decline. Finally, we investigated whether older adults can compensate for altered processing in visual cortex by encoding stimulus information across larger numbers of voxels within the visual cortex or in regions outside visual cortex. We found no evidence that older adults can increase the distinctiveness of distributed activation patterns, either within or beyond the visual cortex. Our results have important implications for theories of cognitive aging and highlight the value of MVPA to the study of neural coding in the aging brain.
doi:10.1016/j.neuroimage.2010.04.267
PMCID: PMC2962693  PMID: 20451629
aging; fMRI; MVPA; dedifferentiation; compensation; ventral visual cortex
17.  Toward defining the preclinical stages of Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease 
The pathophysiological process of Alzheimer's disease (AD) is thought to begin many years before the diagnosis of AD dementia. This long “preclinical” phase of AD would provide a critical opportunity for therapeutic intervention; however, we need to further elucidate the link between the pathological cascade of AD and the emergence of clinical symptoms. The National Institute on Aging and the Alzheimer's Association convened an international workgroup to review the biomarker, epidemiological, and neuropsychological evidence, and to develop recommendations to determine the factors which best predict the risk of progression from “normal” cognition to mild cognitive impairment and AD dementia. We propose a conceptual framework and operational research criteria, based on the prevailing scientific evidence to date, to test and refine these models with longitudinal clinical research studies. These recommendations are solely intended for research purposes and do not have any clinical implications at this time. It is hoped that these recommendations will provide a common rubric to advance the study of preclinical AD, and ultimately, aid the field in moving toward earlier intervention at a stage of AD when some disease-modifying therapies may be most efficacious.
doi:10.1016/j.jalz.2011.03.003
PMCID: PMC3220946  PMID: 21514248
Preclinical Alzheimer's disease; Biomarker; Amyloid; Neurodegeneration; Prevention
18.  A framework on surface-based connectivity quantification for the human brain 
Journal of neuroscience methods  2011;197(2):324-332.
Quantifying the connectivity between arbitrary surface patches in the human brain cortex can be used in studies on brain function and to characterize clinical diseases involving abnormal connectivity. Cortical regions of human brain in their natural forms can be represented in surface formats. In this paper, we present a framework to quantify connectivity using cortical surface segmentation and labeling from structural magnetic resonance images, tractography from diffusion tensor images, and nonlinear inter-subject registration. For a single subject, the connectivity intensity of any point on the cortical surface is set to unity if the point is connected and zero if it is not connected. The connectivity proportion is defined as the ratio of the total connected surface area to the total area of the surface patch. By nonlinearly registering the connectivity data of a group of normal controls into a template space, a population connectivity metric can be defined as either the average connectivity intensity of a cortical point or the average connectivity proportion of a cortical region. In the template space, a connectivity profile and a connectivity histogram of an arbitrary cortical region of interest can then be derived from these connectivity quantification values. Results from the application of these quantification metrics to a population of schizophrenia patients and normal controls are presented, revealing connectivity signatures of specified cortical regions and detecting connectivity abnormalities.
doi:10.1016/j.jneumeth.2011.02.017
PMCID: PMC3081907  PMID: 21396960
connectivity; quantification; DTI; cortical surface; tractography
19.  Investigating Unique Environmental Contributions to the Neural Representation of Written Words: A Monozygotic Twin Study 
PLoS ONE  2012;7(2):e31512.
The visual word form area (VWFA) is a region of left inferior occipitotemporal cortex that is critically involved in visual word recognition. Previous studies have investigated whether and how experience shapes the functional characteristics of VWFA by comparing neural response magnitude in response to words and nonwords. Conflicting results have been obtained, however, perhaps because response magnitude can be influenced by other factors such as attention. In this study, we measured neural activity in monozygotic twins, using functional magnetic resonance imaging. This allowed us to quantify differences in unique environmental contributions to neural activation evoked by words, pseudowords, consonant strings, and false fonts in the VWFA and striate cortex. The results demonstrate significantly greater effects of unique environment in the word and pseudoword conditions compared to the consonant string and false font conditions both in VWFA and in left striate cortex. These findings provide direct evidence for environmental contributions to the neural architecture for reading, and suggest that learning phonology and/or orthographic patterns plays the biggest role in shaping that architecture.
doi:10.1371/journal.pone.0031512
PMCID: PMC3275550  PMID: 22347490
20.  Age-Related Neural Dedifferentiation in the Motor System 
PLoS ONE  2011;6(12):e29411.
Recent neuroimaging studies using multi-voxel pattern analysis (MVPA) show that distributed patterns of brain activation elicited by different visual stimuli are less distinctive in older adults than in young adults. However, less is known about the effects of aging on the neural representation of movement. The present study used MVPA to compare the distinctiveness of motor representations in young and older adults. We also investigated the contributions of brain structure to age differences in the distinctiveness of motor representations. We found that neural distinctiveness was reduced in older adults throughout the motor control network. Although aging was also associated with decreased gray matter volume in these regions, age differences in motor distinctiveness remained significant after controlling for gray matter volume. Our results suggest that age-related neural dedifferentiation is not restricted to sensory perception and is instead a more general feature of the aging brain.
doi:10.1371/journal.pone.0029411
PMCID: PMC3245287  PMID: 22216274
21.  Human Neuroscience and the Aging Mind: A New Look at Old Problems 
In this article, marking the 65th anniversary of the Journal of Gerontology, we offer a broad-brush overview of the new synthesis between neuroscientific and psychological approaches to cognitive aging. We provide a selective review of brain imaging studies and their relevance to mechanisms of cognitive aging first identified primarily from behavioral measurements. We also examine some new key discoveries, including evidence favoring plasticity and compensation that have emerged specifically from using cognitive neuroscience methods to study healthy aging. We then summarize several recent neurocognitive theories of aging, including our own model—the Scaffolding Theory of Aging and Cognition. We close by discussing some newly emerging trends and future research trajectories for investigating the aging mind and brain.
doi:10.1093/geronb/gbq035
PMCID: PMC2883872  PMID: 20478901
Aging; Plasticity; Cognitive Neuroscience; Imaging
22.  Culture differences in neural processing of faces and houses in the ventral visual cortex 
Behavioral and eye-tracking studies on cultural differences have found that while Westerners have a bias for analytic processing and attend more to face features, East Asians are more holistic and attend more to contextual scenes. In this neuroimaging study, we hypothesized that these culturally different visual processing styles would be associated with cultural differences in the selective activity of the fusiform regions for faces, and the parahippocampal and lingual regions for contextual stimuli. East Asians and Westerners passively viewed face and house stimuli during an functional magnetic resonance imaging experiment. As expected, we observed more selectivity for faces in Westerners in the left fusiform face area (FFA) reflecting a more analytic processing style. Additionally, Westerners showed bilateral activity to faces in the FFA whereas East Asians showed more right lateralization. In contrast, no cultural differences were detected in the parahippocampal place area (PPA), although there was a trend for East Asians to show greater house selectivity than Westerners in the lingual landmark area, consistent with more holistic processing in East Asians. These findings demonstrate group biases in Westerners and East Asians that operate on perceptual processing in the brain and are consistent with previous eye-tracking data that show cultural biases to faces.
doi:10.1093/scan/nsq060
PMCID: PMC2894673  PMID: 20558408
ventral-visual; selectivity; culture; faces; houses
23.  Cultural differences in the lateral occipital complex while viewing incongruent scenes 
Converging behavioral and neuroimaging evidence indicates that culture influences the processing of complex visual scenes. Whereas Westerners focus on central objects and tend to ignore context, East Asians process scenes more holistically, attending to the context in which objects are embedded. We investigated cultural differences in contextual processing by manipulating the congruence of visual scenes presented in an fMR-adaptation paradigm. We hypothesized that East Asians would show greater adaptation to incongruent scenes, consistent with their tendency to process contextual relationships more extensively than Westerners. Sixteen Americans and 16 native Chinese were scanned while viewing sets of pictures consisting of a focal object superimposed upon a background scene. In half of the pictures objects were paired with congruent backgrounds, and in the other half objects were paired with incongruent backgrounds. We found that within both the right and left lateral occipital complexes, Chinese participants showed significantly greater adaptation to incongruent scenes than to congruent scenes relative to American participants. These results suggest that Chinese were more sensitive to contextual incongruity than were Americans and that they reacted to incongruent object/background pairings by focusing greater attention on the object.
doi:10.1093/scan/nsp056
PMCID: PMC2894688  PMID: 20083532
culture; scene perception; context; incongruence; lateral occipital cortex
24.  Reduced Neural Selectivity Increases fMRI Adaptation with Age during Face Discrimination 
NeuroImage  2010;51(1):336-344.
Ventral-visual activity in older adults has been characterized by dedifferentiation, or reduced distinctiveness, of responses to different categories of visual stimuli such as faces and houses, that typically elicit highly specialized responses in the fusiform and parahippocampal brain regions respectively in young adults (Park et al., 2004). In the present study, we demonstrate that age-related neural dedifferentiation applies to within-category stimuli (different types of faces) as well, such that older adults process less distinctive representations for individual faces than young adults. We performed a functional magnetic resonance imaging adaptation experiment while young and older participants made same-different judgments to serially presented face-pairs that were Identical, Moderate in similarity through morphing, or Different. As expected, older adults showed adaptation in the fusiform face area (FFA), during the Identical as well as the Moderate conditions relative to the Different condition. Young adults showed adaptation during the Identical condition, but minimal adaptation to the Moderate condition. These results indicate that older adults’ FFA treated the morphed faces as Identical faces, reflecting decreased fidelity of neural representation of faces with age.
doi:10.1016/j.neuroimage.2010.01.107
PMCID: PMC2847054  PMID: 20139012
Aging; Dedifferentiation; Faces; Fusiform Area; Adaptation
25.  The Impact of Increased Relational Encoding Demands on Frontal and Hippocampal Function in Older Adults 
In the present study, we manipulated the cognitive effort in an associative encoding task using fMRI. Older and younger adults were presented with two objects that were either semantically related or unrelated, and were required to form a relationship between the items. Both groups self-reported greater difficulty in completing the unrelated associative encoding task providing independent evidence of the associative difficulty manipulation. On both the low and high difficulty tasks, older adults showed a typical pattern of increased right inferior frontal recruitment relative to younger adults. Of particular interest was the finding that both groups showed increased activation as task difficulty increased in the left inferior frontal and left hippocampus. Overall, the results suggest that the aging brain is characterized by greater prefrontal processing, but that as cognitive demand increases, the networks used by older and younger adults are the largely the same.
doi:10.1016/j.cortex.2009.07.011
PMCID: PMC2826535  PMID: 19709652
Aging; Relational Memory; Prefrontal Cortex; Hippocampus; Encoding

Results 1-25 (36)