PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Exocytosis of ATP From Astrocytes Modulates Phasic and Tonic Inhibition in the Neocortex 
PLoS Biology  2014;12(1):e1001747.
Astrocytes secrete ATP by exocytosis from synaptic-like vesicles, activating neuronal P2X receptors, which contribute to postsynaptic GABA receptor down-regulation, ultimately mediating the communication between astrocytes and neurons required for brain function.
Communication between neuronal and glial cells is important for many brain functions. Astrocytes can modulate synaptic strength via Ca2+-stimulated release of various gliotransmitters, including glutamate and ATP. A physiological role of ATP release from astrocytes was suggested by its contribution to glial Ca2+-waves and purinergic modulation of neuronal activity and sleep homeostasis. The mechanisms underlying release of gliotransmitters remain uncertain, and exocytosis is the most intriguing and debated pathway. We investigated release of ATP from acutely dissociated cortical astrocytes using “sniff-cell” approach and demonstrated that release is vesicular in nature and can be triggered by elevation of intracellular Ca2+ via metabotropic and ionotropic receptors or direct UV-uncaging. The exocytosis of ATP from neocortical astrocytes occurred in the millisecond time scale contrasting with much slower nonvesicular release of gliotransmitters via Best1 and TREK-1 channels, reported recently in hippocampus. Furthermore, we discovered that elevation of cytosolic Ca2+ in cortical astrocytes triggered the release of ATP that directly activated quantal purinergic currents in the pyramidal neurons. The glia-driven burst of purinergic currents in neurons was followed by significant attenuation of both synaptic and tonic inhibition. The Ca2+-entry through the neuronal P2X purinoreceptors led to phosphorylation-dependent down-regulation of GABAA receptors. The negative purinergic modulation of postsynaptic GABA receptors was accompanied by small presynaptic enhancement of GABA release. Glia-driven purinergic modulation of inhibitory transmission was not observed in neurons when astrocytes expressed dn-SNARE to impair exocytosis. The astrocyte-driven purinergic currents and glia-driven modulation of GABA receptors were significantly reduced in the P2X4 KO mice. Our data provide a key evidence to support the physiological importance of exocytosis of ATP from astrocytes in the neocortex.
Author Summary
Brain function depends on the interaction between two major types of cells: neurons transmitting electrical signals and glial cells, which control cerebral circulation and neuronal homeostasis. There is a growing evidence of the participation of astrocytes in regulating neuronal excitability and synaptic plasticity via the release of “gliotransmitters,” which include glutamate and ATP. The importance of ATP release from astrocytes was suggested by studies that demonstrated its contribution to neuronal activity and sleep homeostasis via modulation of known “purinergic” receptors. But the mechanisms underlying gliotransmitter release and the physiological significance of direct glia-to-neuron communication remain unknown and intensively debated. Here, we investigate the release of ATP from astrocytes of brain neocortex and demonstrate that astrocytes can release ATP by Ca2+-dependent exocytosis, most likely from synaptic-like microvesicles. We also find that vesicular release of ATP from astrocytes can directly activate excitatory signaling in the neighboring neurons, operating through purinergic P2X receptors. We saw that activation of these P2X receptors by astrocyte-driven ATP down-regulated the inhibitory synaptic signaling in the neocortical neurons. Our results imply that exocytosis of gliotransmitters is important for the communication between astrocytes and neurons in the neocortex.
doi:10.1371/journal.pbio.1001747
PMCID: PMC3883644  PMID: 24409095
2.  Modulation of ATP-induced LTP by cannabinoid receptors in rat hippocampus 
Purinergic Signalling  2012;8(4):705-713.
Cannabinoids exert powerful action on various forms of synaptic plasticity. These retrograde messengers modulate GABA and glutamate release from presynaptic terminals by acting on presynaptic CB1 receptors. In particular, they inhibit long-term potentiation (LTP) elicited by electrical stimulation of excitatory pathways in rat hippocampus. Recently, LTP of the field excitatory postsynaptic potential (fEPSP) induced by exogenous ATP has been thoroughly explored. The present study demonstrates that cannabinoids inhibit ATP-induced LTP in hippocampal slices of rat. Administration of 10 μM of ATP led to strong inhibition of fEPSPs in CA1/CA3 hippocampal synapses. Within 40 min after ATP removal from bath solution, robust LTP was observed (fEPSP amplitude comprised 130.1 ± 3.8% of control, n = 10). This LTP never appeared when ATP was applied in addition to cannabinoid receptor agonist WIN55,212-2 (100 nM). Selective CB1 receptor antagonist, AM251 (500 nM), completely abolished this effect of WIN55,212-2. Our data indicate that like canonical LTP elicited by electrical stimulation, ATP-induced LTP is under control of CB1 receptors.
Electronic supplementary material
The online version of this article (doi:10.1007/s11302-012-9296-5) contains supplementary material, which is available to authorized users.
doi:10.1007/s11302-012-9296-5
PMCID: PMC3486163  PMID: 22453905
LTP; ATP; Cannabinoids; WIN; Adenosine
3.  Voltage-gated Nav channel targeting in the heart requires an ankyrin-G–dependent cellular pathway 
The Journal of Cell Biology  2008;180(1):173-186.
Voltage-gated Nav channels are required for normal electrical activity in neurons, skeletal muscle, and cardiomyocytes. In the heart, Nav1.5 is the predominant Nav channel, and Nav1.5-dependent activity regulates rapid upstroke of the cardiac action potential. Nav1.5 activity requires precise localization at specialized cardiomyocyte membrane domains. However, the molecular mechanisms underlying Nav channel trafficking in the heart are unknown. In this paper, we demonstrate that ankyrin-G is required for Nav1.5 targeting in the heart. Cardiomyocytes with reduced ankyrin-G display reduced Nav1.5 expression, abnormal Nav1.5 membrane targeting, and reduced Na+ channel current density. We define the structural requirements on ankyrin-G for Nav1.5 interactions and demonstrate that loss of Nav1.5 targeting is caused by the loss of direct Nav1.5–ankyrin-G interaction. These data are the first report of a cellular pathway required for Nav channel trafficking in the heart and suggest that ankyrin-G is critical for cardiac depolarization and Nav channel organization in multiple excitable tissues.
doi:10.1083/jcb.200710107
PMCID: PMC2213608  PMID: 18180363

Results 1-3 (3)