PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (37)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  Lipidomic analysis of the liver identifies changes of major and minor lipid species in adiponectin deficient mice 
Adiponectin protects from hepatic fat storage but adiponectin deficient mice (APN−/−) fed a standard chow do not develop liver steatosis. This indicates that other pathways might be activated to compensate for adiponectin deficiency. An unbiased and comprehensive screen was performed to identify hepatic alterations of lipid classes in these mice. APN−/− mice had decreased hepatic cholesteryl esters while active SREBP2 and systemic total cholesterol were not altered. Upregulation of cytochromes for bile acid synthesis suggests enhanced biliary cholesterol excretion. Analysis of 37 individual fatty acid species showed reduced stearate whereas total fatty acids were not altered. Total amount of triglycerides and phospholipids were equally abundant. A selective increase of monounsaturated phosphatidylcholine and phosphatidylethanolamine which positively correlate with hepatic and systemic triglycerides with the latter being elevated in APN−/− mice, was identified. Stearoyl-CoA desaturase 1 (SCD1) is involved in the synthesis of monounsaturated fatty acids and despite higher mRNA expression enzyme activity was not enhanced. Glucosylceramide postulated to contribute to liver damage was decreased.
This study demonstrates that adiponectin deficiency is associated with hepatic changes in lipid classes in mice fed a standard chow which may protect from liver steatosis.
doi:10.1016/j.yexmp.2012.03.008
PMCID: PMC3907090  PMID: 22465357
Lipid profiling; Liver; Adiponectin deficiency; Hepatic gene expression
2.  Transcriptional Regulation of an Insulin-Sensitizing Adipokine Adipolin/CTRP12 in Adipocytes by Krüppel-Like Factor 15 
PLoS ONE  2013;8(12):e83183.
Obese states characterized by chronic inflammation are closely linked to the development of metabolic dysfunction. We identified adipolin/CTRP12 as an insulin-sensitizing and anti-inflammatory adipokine. Although obese conditions down-regulate adipolin expression, its molecular mechanism is largely unknown. Here we show that the transcriptional regulator Krüppel-like factor (KLF) 15 is involved in the regulation of adipolin expression in adipocytes. White adipose tissue from diet-induced obese (DIO) mice showed decreased expression of KLF9 and KLF15 among several KLFs, which was accompanied by reduced expression of adipolin. In cultured 3T3L1 adipocytes, treatment with TNFα significantly reduced the mRNA levels of KLF9, KLF15 and adipolin. Adenovirus-mediated overexpression of KLF15 but not KLF9 reversed TNFα-induced reduction of adipolin expression in adipocytes. Conversely, gene targeting ablation of KLF15 attenuated adipolin expression in adipocytes. Expression of KLF15 but not KLF9 enhanced the promoter activity of adipolin in HEK293 cells. Pretreatment of 3T3L1 adipocytes with the JNK inhibitor SP600125, but not p38 MAPK inhibitor SB203580 blocked the inhibitory effects of TNFα on adipolin and KLF15 expression. These data suggest that adipose inflammation under conditions of obesity suppresses adipolin expression via JNK-dependent down-regulation of KLF15 in adipocytes.
doi:10.1371/journal.pone.0083183
PMCID: PMC3865152  PMID: 24358263
3.  Adiponectin‐Mediated Modulation of Lymphatic Vessel Formation and Lymphedema 
Background
Obesity is linked with an increased risk of lymphedema, which is a serious clinical problem. Adiponectin is a circulating adipokine that is down‐regulated in obese states. We investigated the effects of adiponectin on lymphatic vessel formation in a model of lymphedema and dissected its mechanisms.
Methods and Results
A mouse model of lymphedema was created via ablation of tail surface lymphatic network. Adiponectin‐knockout mice showed the greater diameter of the injured tail compared with wild‐type mice, which was associated with lower numbers of lymphatic endothelial cells (LECs). Systemic delivery of adiponectin reduced the thickness of the injured tail and enhanced LEC formation in wild‐type and adiponectin‐knockout mice. Adiponectin administration also improved the edema of injured tails in obese KKAy mice. Treatment with adiponectin protein stimulated the differentiation of human LECs into tubelike structures and increased LEC viability. Adiponectin treatment promoted the phosphorylation of AMP‐activated protein kinase (AMPK), Akt, and endothelial nitric oxide synthase n LECs. Blockade of AMPK or Akt activity abolished adiponectin‐stimulated increase in LEC differentiation and viability and endothelial nitric oxide synthase phosphorylation. Inhibition of AMPK activation also suppressed adiponectin‐induced Akt phosphorylation in LECs. In contrast, inactivation of Akt signaling had no effects on adiponectin‐mediated AMPK phosphorylation in LECs. Furthermore, adiponectin administration did not affect the thickening of the damaged tail in endothelial nitric oxide synthase–knockout mice.
Conclusions
Adiponectin can promote lymphatic vessel formation via activation of AMPK/Akt/endothelial nitric oxide synthase signaling within LECs, thereby leading to amelioration of lymphedema.
doi:10.1161/JAHA.113.000438
PMCID: PMC3835259  PMID: 24052499
adiponectin; Akt; AMPK; eNOS; lymphangiogenesis
4.  A Framework for Analysis of Abortive Colony Size Distributions Using a Model of Branching Processes in Irradiated Normal Human Fibroblasts 
PLoS ONE  2013;8(7):e70291.
Background
Clonogenicity gives important information about the cellular reproductive potential following ionizing irradiation, but an abortive colony that fails to continue to grow remains poorly characterized. It was recently reported that the fraction of abortive colonies increases with increasing dose. Thus, we set out to investigate the production kinetics of abortive colonies using a model of branching processes.
Methodology/Principal Findings
We firstly plotted the experimentally determined colony size distribution of abortive colonies in irradiated normal human fibroblasts, and found the linear relationship on the log-linear or log-log plot. By applying the simple model of branching processes to the linear relationship, we found the persistent reproductive cell death (RCD) over several generations following irradiation. To verify the estimated probability of RCD, abortive colony size distribution (≤15 cells) and the surviving fraction were simulated by the Monte Carlo computational approach for colony expansion. Parameters estimated from the log-log fit demonstrated the good performance in both simulations than those from the log-linear fit. Radiation-induced RCD, i.e. excess probability, lasted over 16 generations and mainly consisted of two components in the early (<3 generations) and late phases. Intriguingly, the survival curve was sensitive to the excess probability over 5 generations, whereas abortive colony size distribution was robust against it. These results suggest that, whereas short-term RCD is critical to the abortive colony size distribution, long-lasting RCD is important for the dose response of the surviving fraction.
Conclusions/Significance
Our present model provides a single framework for understanding the behavior of primary cell colonies in culture following irradiation.
doi:10.1371/journal.pone.0070291
PMCID: PMC3720916  PMID: 23894635
5.  Adiponectin Modulates Oxidative Stress-Induced Autophagy in Cardiomyocytes 
PLoS ONE  2013;8(7):e68697.
Diastolic heart failure (HF) i.e., “HF with preserved ejection fraction” (HF-preserved EF) accounts for up to 50% of all HF presentations; however there have been no therapeutic advances. This stems in part from an incomplete understanding about HF-preserved EF. Hypertension is the major cause of HF-preserved EF whilst HF-preserved EF is also highly associated with obesity. Similarly, excessive reactive oxygen species (ROS), i.e., oxidative stress occurs in hypertension and obesity, sensitizing the heart to the renin-angiotensin-aldosterone system, inducing autophagic type-II programmed cell death and accelerating the propensity to adverse cardiac remodeling, diastolic dysfunction and HF. Adiponectin (APN), an adipokine, mediates cardioprotective actions but it is unknown if APN modulates cardiomyocyte autophagy. We tested the hypothesis that APN ameliorates oxidative stress-induced autophagy in cardiomyocytes. Isolated adult rat ventricular myocytes were pretreated with recombinant APN (30µg/mL) followed by 1mM hydrogen peroxide (H2O2) exposure. Wild type (WT) and APN-deficient (APN-KO) mice were infused with angiotensin (Ang)-II (3.2mg/kg/d) for 14 days to induced oxidative stress. Autophagy-related proteins, mTOR, AMPK and ERK expression were measured. H2O2 induced LC3I to LC3II conversion by a factor of 3.4±1.0 which was abrogated by pre-treatment with APN by 44.5±10%. However, neither H2O2 nor APN affected ATG5, ATG7, or Beclin-1 expression. H2O2 increased phospho-AMPK by 49±6.0%, whilst pretreatment with APN decreased phospho-AMPK by 26±4%. H2O2 decreased phospho-mTOR by 36±13%, which was restored by APN. ERK inhibition demonstrated that the ERK-mTOR pathway is involved in H2O2-induced autophagy. Chronic Ang-II infusion significantly increased myocardial LC3II/I protein expression ratio in APN-KO vs. WT mice. These data suggest that excessive ROS caused cardiomyocyte autophagy which was ameliorated by APN by inhibiting an H2O2-induced AMPK/mTOR/ERK-dependent mechanism. These findings demonstrate the anti-oxidant potential of APN in oxidative stress-associated cardiovascular diseases, such as hypertension-induced HF-preserved EF.
doi:10.1371/journal.pone.0068697
PMCID: PMC3716763  PMID: 23894332
6.  Plasma adiponectin and mortality in critically ill subjects with acute respiratory failure 
Critical care medicine  2010;38(12):2329-2334.
Objective
Adiponectin, an anti-inflammatory cytokine produced by adipose tissue, has been shown to modulate survival in animal models of critical illness. We examined the association between plasma adiponectin and clinical outcomes in critically ill patients with acute respiratory failure.
Design
Secondary analysis of a single-center, randomized controlled trial.
Setting
Medical intensive care unit of a university-based, tertiary medical center.
Patients
One hundred seventy-five subjects with acute respiratory failure enrolled in randomized, controlled pilot trial of trophic vs. full-caloric enteral feeding (EDEN pilot study).
Interventions
None.
Measurements and Main Results
Adiponectin measured within 48 hrs of respiratory failure (Apn1) was inversely correlated with body mass index (r = −0.25, p = .007) and was higher in females (median, 12.6 µg/mL; interquartile range, 7.6–17.1) than males (9.45 µg/mL; 6.2–14.2; p = .02). Adiponectin increased at day 6 (Apn1: 11.4 µg/mL [6.6 –15.3] vs. Apn6: 14.1 µg/mL [10.3–18.6], p < .001). This increase was significant only in survivors (Δ adiponectin in survivors: 3.9 ± 6 µg/mL, n = 80, p < .001 vs. Δ in nonsurvivors: 1.69 ± 4.6 µg/mL, n = 14, p =.19). Higher Apn1 was significantly associated with 28-day mortality (odds ratio 1.59 per 5-µg/mL increase; 95% confidence interval 1.15–2.21; p = .006). No measured demographic, clinical, or cytokine covariates, including interleukin-6, interleukin-8, interleukin-10, interleukin-1β, interleukin-12, tumor necrosis factor-α, and interferon-γ, were confounders or effect modifiers of this association between adiponectin and mortality.
Conclusions
Independent of measured covariates, increased plasma adiponectin levels measured within 48 hrs of respiratory failure are associated with mortality. This finding suggests that factors derived from adipose tissue play a role in modulating the response to critical illness.
doi:10.1097/CCM.0b013e3181fa0561
PMCID: PMC3703623  PMID: 20890191
adiponectin; respiratory insufficiency; critical illness; biologic markers; epidemiology; translational research
7.  Impact of a Single Intracoronary Administration of Adiponectin on Myocardial Ischemia/Reperfusion Injury in a Pig Model 
Background
Adiponectin plays a protective role in the development of obesity-linked disorders. We demonstrated that adiponectin exerts beneficial actions on acute ischemic injury in mice hearts. However, the effects of adiponectin treatment in large animals and its feasibility in clinical practice have not been investigated. This study investigated the effects of intracoronary administration of adiponectin on myocardial ischemia-reperfusion (I/R) injury in pigs.
Methods and Results
The left anterior descending coronary artery was occluded in pigs for 45 minutes and then reperfused for 24 hours. Recombinant adiponectin protein was given as a bolus intracoronary injection during ischemia. Cardiac functional parameters were measured by a manometer-tipped catheter. Apoptosis was evaluated by terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling staining. Tumor necrosis factor-α and interleukin-10 transcripts were analyzed by real-time polymerase chain reaction. Serum levels of derivatives of reactive oxygen metabolites and biological antioxidant potential were measured. Adiponectin protein was determined by immunohistochemical and Western blot analyses. Intracoronary administration of adiponectin protein led to a reduction in myocardial infarct size and improvement of left ventricular function in pigs after I/R. Injected adiponectin protein accumulated in the I/R-injured heart. Adiponectin treatment resulted in decreased tumor necrosis factor-α and increased interleukin-10 mRNA levels in the myocardium after I/R. Adiponectin-treated pigs had reduced apoptotic activity in the I/R-injured heart and showed increased biological antioxidant potential levels and decreased derivatives of reactive oxygen metabolite levels in the blood stream after I/R.
Conclusions
These data suggest that adiponectin protects against I/R injury in a preclinical pig model through its ability to suppress inflammation, apoptosis, and oxidative stress. Administration of intracoronary adiponectin could be a useful adjunctive therapy for acute myocardial infarction.
doi:10.1161/CIRCINTERVENTIONS.109.872044
PMCID: PMC3668696  PMID: 20332381
adiponectin; myocardial infarction; reperfusion
8.  The Polyphenols Resveratrol and S17834 prevent the Structural and Functional Sequelae of Diet-Induced Metabolic Heart Disease in Mice 
Circulation  2012;125(14):1757-1764.
Background
Diet-induced obesity is associated with metabolic heart disease characterized by left ventricular (LV) hypertrophy and diastolic dysfunction. Polyphenols such as resveratrol (RSV) and the synthetic flavonoid derivative S17834 exert beneficial systemic and cardiovascular effects in a variety of settings including diabetes and chronic hemodynamic overload.
Methods and Results
We characterized the structural and functional features of a mouse model of diet-induced metabolic syndrome, and used the model to test the hypothesis that the polyphenols prevent myocardial hypertrophy and diastolic dysfunction. Male C57BL/6J mice were fed a normal diet or a diet high in fat and sugar (HFHS) with or without concomitant treatment with S17834 or RSV for up to 8 months. HFHS diet-fed mice developed progressive LV hypertrophy and diastolic dysfunction with preservation of systolic function in association with myocyte hypertrophy and interstitial fibrosis. In HFHS-fed mice there was increased myocardial oxidative stress with evidence of oxidant-mediated protein modification via tyrosine nitration and 4-OH-2-nonenol (HNE) adduction. HFHS-fed mice also exhibited increases in plasma fasting glucose, insulin and HOMA-IR indicative of insulin resistance. Treatment with S17834 or RSV prevented LV hypertrophy and diastolic dysfunction. For S17834, these beneficial effects were associated with decreases in oxidant-mediated protein modifications and hyper-insulinemia, and increased plasma adiponectin.
Conclusions
RSV and S17834 administered concurrently with a HFHS diet prevent the development of LV hypertrophy, interstitial fibrosis and diastolic dysfunction. Multiple mechanisms may contribute to the beneficial effects of the polyphenols including a reduction in myocardial oxidative stress and related protein modifications, amelioration of insulin resistance and increased plasma adiponectin. The polyphenols RSV and S17834 may be of value in the prevention of diet-induced metabolic heart disease.
doi:10.1161/CIRCULATIONAHA.111.067801
PMCID: PMC3354628  PMID: 22388319
left ventricular hypertrophy; diastolic dysfunction; 4-OH-2-nonenol; metabolic syndrome; oxidative stress
9.  iPS cell sheets created by a novel magnetite tissue engineering method for reparative angiogenesis 
Scientific Reports  2013;3:1418.
Angiogenic cell therapy represents a novel strategy for ischemic diseases, but some patients show poor responses. We investigated the therapeutic potential of an induced pluripotent stem (iPS) cell sheet created by a novel magnetite tissue engineering technology (Mag-TE) for reparative angiogenesis. Mouse iPS cell-derived Flk-1+ cells were incubated with magnetic nanoparticle-containing liposomes (MCLs). MCL-labeled Flk-1+ cells were mixed with diluted extracellular matrix (ECM) precursor and a magnet was placed on the reverse side. Magnetized Flk-1+ cells formed multi-layered cell sheets according to magnetic force. Implantation of the Flk-1+ cell sheet accelerated revascularization of ischemic hindlimbs relative to the contralateral limbs in nude mice as measured by laser Doppler blood flow and capillary density analyses. The Flk-1+ cell sheet also increased the expressions of VEGF and bFGF in ischemic tissue. iPS cell-derived Flk-1+ cell sheets created by this novel Mag-TE method represent a promising new modality for therapeutic angiogenesis.
doi:10.1038/srep01418
PMCID: PMC3593218  PMID: 23475393
10.  Thiazolidinediones reduce pathological neovascularization in ischemic retina via an adiponectin-dependent mechanism 
Objective
The insulin-sensitizing agents referred to as thiazolidinediones (TZDs) possess anti-atherogenic and anti-inflammatory actions that contribute to protection against diabetic macrovascular complications. However, little is known about the effects of TZDs on retinal microvessel disorders. Here, we investigated whether TZDs modulate retinal vessel formation in a mouse model of oxygen- retinopathy.
Methods and Results
Neonatal mice were subjected to ischemia-induced retinopathy to produce pathological neovascular tuft formation. Pioglitazone (10 mg/kg/day), rosiglitazone (10 mg/kg/day) or vehicle was given by gavage once a day from postnatal day 7 (P7) to P17. Systemic treatment of wild-type (WT) mice with TZDs led to a significant decrease in pathological retinal neovascularization during ischemia compared with vehicle treatment, which was accompanied by increased plasma levels of the fat-derived hormone adiponectin. In contrast to WT mice, TZDs had no effects on ischemia-induced pathological retinal vessel formation in adiponectin-knockout (APN-KO) mice. Pioglitazone reduced tumor necrosis factor (TNF)-α expression in ischemic retina in WT mice but not in APN-KO mice. Furthermore, pioglitazone increased plasma adiponectin levels in TNF-α-KO mice but did not affect ischemia-induced pathological retinal neovascularization in this strain.
Conclusions
These data show that TZDs attenuate pathological retinal microvessel formation through adiponectin-mediated modulation of TNF-α production.
doi:10.1161/ATVBAHA.109.198465
PMCID: PMC3552615  PMID: 19910632
pioglitazone; adiponectin; neovascularization; ischemia; angiogenesis
11.  Therapeutic Impact of Follistatin-Like 1 on Myocardial Ischemic Injury in Preclinical Models 
Circulation  2012;126(14):1728-1738.
Background
Acute coronary syndrome is a leading cause of death in developed countries. Follistatin-like 1 (FSTL1) is a myocyte-derived secreted protein that is upregulated in the heart in response to ischemic insult. Here, we investigated the therapeutic impact of FSTL1 on acute cardiac injury in small and large preclinical animal models of ischemia/reperfusion and dissected its molecular mechanism.
Methods and Results
Administration of human FSTL1 protein significantly attenuated myocardial infarct size in a mouse or pig model of ischemia/reperfusion, which was associated with a reduction of apoptosis and inflammatory responses in the ischemic heart. Administration of FSTL1 enhanced the phosphorylation of AMP-activated protein kinase in the ischemia/reperfusion–injured heart. In cultured cardiac myocytes, FSTL1 suppressed apoptosis in response to hypoxia/reoxygenation and lipopolysaccharide-stimulated expression of proinflammatory genes through its ability to activate AMP-activated protein kinase. Ischemia/reperfusion led to enhancement of bone morphogenetic protein-4 expression and Smad1/5/8 phosphorylation in the heart, and FSTL1 suppressed the increased phosphorylation of Smad1/5/8 in ischemic myocardium. Treating cardiac myocytes with FSTL1 abolished the bone morphogenetic protein-4 –stimulated increase in apoptosis, Smad1/5/8 phosphorylation, and proinflammatory gene expression. In cultured macrophages, FSTL1 diminished lipopolysaccharide-stimulated expression of proinflammatory genes via activation of AMP-activated protein kinase and abolished bone morphogenetic protein-4 – dependent induction of proinflammatory mediators.
Conclusions
Our data indicate that FSTL1 can prevent myocardial ischemia/reperfusion injury by inhibiting apoptosis and inflammatory response through modulation of AMP-activated protein kinase– and bone morphogenetic protein-4 – dependent mechanisms, suggesting that FSTL1 could represent a novel therapeutic target for post-myocardial infarction, acute coronary syndrome.
doi:10.1161/CIRCULATIONAHA.112.115089
PMCID: PMC3548325  PMID: 22929303
apoptosis; inflammation; ischemia; myocytes; cardiac; reperfusion
12.  Adiponectin attenuates LPS-induced acute lung injury through suppression of endothelial cell activation1 
Adiponectin (APN) is an adipose tissue-derived factor with anti-inflammatory and vascular protective properties whose levels paradoxically decrease with increasing body fat. In this study, APN’s role in the early development of ALI to lipopolysaccharide (LPS) was investigated. Intra-tracheal (i.t.) LPS elicited an exaggerated systemic inflammatory response in APN-deficient (APN−/−) mice compared to wild-type (wt) littermates. Increased lung injury and inflammation were observed in APN−/− mice as early as 4 hours after delivery of LPS. Targeted gene expression profiling performed on immune and endothelial cells isolated from lung digests 4 hours after LPS administration showed increased pro-inflammatory gene expression (e.g. IL-6) only in endothelial cells of APN−/− mice when compared to wt mice. Direct effects on lung endothelium were demonstrated by APN’s ability to inhibit LPS-induced IL-6 production in primary human endothelial cells in culture. Furthermore, T-cadherin-deficient (T-cad−/−) mice that have significantly reduced lung airspace APN but high serum APN levels had pulmonary inflammatory responses after i.t. LPS that were similar to those of wt mice. These findings indicate the importance of serum APN in modulating LPS-induced ALI and suggest that conditions leading to hypoadiponectinemia (e.g. obesity) predispose to development of ALI through exaggerated inflammatory response in pulmonary vascular endothelium.
doi:10.4049/jimmunol.1100426
PMCID: PMC3253176  PMID: 22156343
Adiponectin; acute lung injury; endothelium; T-cadherin
13.  Adipokines in inflammation and metabolic disease 
Nature reviews. Immunology  2011;11(2):85-97.
The worldwide epidemic of obesity has brought cons iderable attention to research aimed at understanding the biology of adipocytes (fat cells) and the events occurring in adipose tissue (fat) and in the bodies of obese individuals. Accumulating evidence indicates that obesity causes chronic low-grade inflammation and that this contributes to systemic metabolic dysfunction that is associated with obesity-linked disorders. Adipose tissue functions as a key endocrine organ by releasing multiple bioactive substances, known as adipose-derived secreted factors or adipokines, that have pro-inflammatory or anti-inflammatory activities. Dysregulated production or secretion of these adipokines owing to adipose tissue dysfunction can contribute to the pathogenesis of obesity-linked complications. In this Review, we focus on the role of adipokines in inflammatory responses and discuss their potential as regulators of metabolic function.
doi:10.1038/nri2921
PMCID: PMC3518031  PMID: 21252989
14.  Follistatin-like 1 in Chronic Systolic Heart Failure: A Marker of Left Ventricular Remodeling 
Circulation. Heart failure  2011;4(5):621-627.
Background
Follistatin-like 1 (FSTL1) is an extracellular glycoprotein that is found in human serum. Recent work suggests that FSTL1 is secreted in response to ischemic injuries and that its overexpression is protective in the heart and vasculature.
Methods and Results
Here, we examined serum FSTL1 levels in patients with chronic heart failure with left ventricular (LV) ejection fraction <40% (n=86). The distribution of the sample, from these chronic heart failure patients, was separated into three tertiles of low, medium and high FSTL1 levels. Serum FSTL1 levels were increased 56% above age- and gender-matched, healthy controls. Diabetes mellitus, brain natriuretic peptide level, left atrial size, LV posterior wall thickness, LV end-diastolic diameter and LV mass were significant determinants of FSTL1 serum levels by bivariate analysis. After controlling for significant covariates, FSTL1 levels predicted LV hypertrophy (as measured by LV mass index) by multivariate linear regression analysis (P<0.001). Unadjusted survival analysis demonstrated increased mortality in patients with increasing FSTL1 levels (P=0.09). After adjusting for significant parameters, patients with increased FSTL1 remained at the highest risk of death [hazard ratio (95% confidence limits) 1.028, (0.98 and 1.78)]; (P=0.26). To determine whether elevated FSTL1 may be derived from the myocardium, FSTL1 protein expression was measured in samples from explanted, failing (n=18) and non-failing human hearts (n=7). LV failing hearts showed 2.5-fold higher FSTL1 protein levels than non-failing control hearts (P<0.05).
Conclusions
Elevated serum FSTL1 in human heart failure patients was associated with LV hypertrophy. Further studies on the role of FSTL1 as a biomarker in chronic systolic heart failure are warranted.
doi:10.1161/CIRCHEARTFAILURE.110.960625
PMCID: PMC3178753  PMID: 21622850
follistatin-like 1; systolic heart failure; left ventricular hypertrophy
15.  Omentin as a novel biomarker of metabolic risk factors 
Background
Omentin is an adipocytokine that is abundantly expressed in visceral fat tissue. We investigated the association of omentin with the number of metabolic risk factors.
Finding
The study population comprised 201 Japanese men who underwent annual health checkups. Plasma omentin levels were determined by enzyme-linked immunosorbent assay. We divided the subjects into 4 groups according to omentin levels. A reduction of plasma omentin levels significantly correlated with an increase in the mean number of metabolic risk factors such as increased waist circumference, dyslipidemia, high blood pressure and glucose intolerance.
Conclusions
Circulating omentin levels negatively correlated with the multiplicity of metabolic risk factors, suggesting that omentin acts as a biomarker of metabolic disorders.
doi:10.1186/1758-5996-4-37
PMCID: PMC3411496  PMID: 22835063
Omentin; Adipocytokine; Metabolic disorders; Risk factors; Biomarkers
16.  Relation of a common variant of the adiponectin gene to serum adiponectin concentration and metabolic traits in an aged Japanese population 
Adiponectin is an adipocyte-derived protein that is down-regulated in obesity-linked disorders. Variants of the adiponectin gene (ADIPOQ) have been shown to affect adiponectin level. We have now examined the relation of polymorphisms of ADIPOQ to adiponectin concentration and to metabolic disorders in the Kita-Nagoya Genomic Epidemiology study, a population-based study of elderly Japanese. The genomic region including ADIPOQ was genotyped for 30 single nucleotide polymorphisms in 500 subjects of a screening population with the use of a fluorescence- or colorimetry-based allele-specific DNA primer–probe assay system. Four polymorphisms were then selected for genotyping in an additional 2797 subjects. Serum adiponectin level was negatively associated with metabolic abnormalities after adjustment for age and sex. The minor alleles of the rs1656930, Ile164Thr, and rs9882205 polymorphisms were associated with a low serum adiponectin level. Whereas the minor alleles of rs1656930 and rs9882205 were common (minor allele frequency of 6.2 and 38.5%, respectively), that of Ile164Thr was rare (0.9%). The minor allele of rs1656930 was positively associated with systolic blood pressure and the prevalence of hypertension. The association of rs1656930 with adiponectin level was replicated in an independent population. A subject with the 164Thr/Thr genotype had an extremely low serum adiponectin level (0.6 μg/ml) and the phenotype of metabolic syndrome. Our results suggest that a common variant of ADIPOQ, the minor allele of rs1656930, is associated with hypoadiponectinemia and hypertension. Screening for a common genetic background underlying low adiponectin levels might provide important information for assessment and management of metabolic disorders.
doi:10.1038/ejhg.2010.201
PMCID: PMC3062002  PMID: 21150884
adiponectin; polymorphism; metabolic disorder; hypertension; epidemiology
17.  Adiponectin deficiency exacerbates cardiac dysfunction following pressure overload through disruption of an AMPK-dependent angiogenic response 
Background
Although increasing evidence indicates that an adipokine adiponectin exerts protective actions on heart, its effects on coronary angiogenesis following pressure overload have not been examined previously. Because disruption of angiogenesis during heart growth leads to contractile dysfunction and heart failure, we hypothesized that adiponectin modulates cardiac remodeling in response to pressure overload through its ability to regulate adaptive angiogenesis.
Methods and Results
Adiponectin-knockout (APN-KO) and wild-type (WT) mice were subjected to pressure overload caused by transverse aortic constriction (TAC). APN-KO mice exhibited greater cardiac hypertrophy, pulmonary congestion, left ventricular (LV) interstitial fibrosis and LV systolic dysfunction after TAC surgery compared with WT mice. APN-KO mice also displayed reduced capillary density in the myocardium after TAC, which was accompanied by a significant decrease in expression of vascular endothelial growth factor (VEGF) and phosphorylation of AMP-activated protein kinase (AMPK). Inhibition of AMPK in WT mice resulted in aggravated LV systolic function, attenuated myocardial capillary density and decreased VEGF expression in response to TAC. The adverse effects of AMPK inhibition on cardiac function and angiogenic response following TAC were diminished in APN-KO mice relative to WT mice. Moreover, adenovirus-mediated VEGF delivery reversed the TAC-induced deficiencies in cardiac microvessel formation and ventricular function observed in the APN-KO mice. In cultured cardiac myocytes, adiponectin treatment stimulated VEGF production, which was inhibited by inactivation of AMPK signaling pathway.
Conclusions
Adiponectin deficiency can accelerate the transition from cardiac hypertrophy to heart failure during pressure overload through disruption of AMPK-dependent angiogenic regulatory axis.
doi:10.1016/j.yjmcc.2010.02.021
PMCID: PMC2885542  PMID: 20206634
adiponectin; AMPK; cardiac angiogenesis; pressure overload; heart failure
18.  Sfrp5 Is an Anti-Inflammatory Adipokine That Modulates Metabolic Dysfunction in Obesity 
Science (New York, N.Y.)  2010;329(5990):454-457.
Adipose tissue secretes proteins referred to as adipokines, many of which promote inflammation and disrupt glucose homeostasis. Here we show that secreted frizzled-related protein 5 (Sfrp5), a protein previously linked to the Wnt signaling pathway, is an anti-inflammatory adipokine whose expression is perturbed in models of obesity and type 2 diabetes. Sfrp5-deficient mice fed a high-calorie diet developed severe glucose intolerance and hepatic steatosis, and their adipose tissue showed an accumulation of activated macrophages that was associated with activation of the c-Jun N-terminal kinase signaling pathway. Adenovirus-mediated delivery of Sfrp5 to mouse models of obesity ameliorated glucose intolerance and hepatic steatosis. Thus, in the setting of obesity, Sfrp5 secretion by adipocytes exerts salutary effects on metabolic dysfunction by controlling inflammatory cells within adipose tissue.
doi:10.1126/science.1188280
PMCID: PMC3132938  PMID: 20558665
19.  Determinants of Adiponectin Levels in Patients with Chronic Systolic Heart Failure 
The American journal of cardiology  2010;105(8):1147-1152.
Adiponectin, an adipocytokine, is secreted by adipocytes and mediates anti-hypertrophic and anti-inflammatory effects in the heart. Plasma concentrations of adiponectin are decreased in obesity, insulin resistance and obesity-associated conditions such as hypertension and coronary heart disease. However, a paradoxical increase in adiponectin levels is observed in human systolic heart failure (HF). We sought to investigate the determinants of adiponectin levels in patients with chronic systolic HF. Total adiponectin levels were measured in 99 patients with stable HF and left ventricular (LV) ejection fraction (EF) <40%. Determinants of adiponectin levels by univariate analysis were included in a multivariate linear regression model. At baseline patients were 62% black, 63% male, mean age of 60±13 years, LVEF of 21±9% and a body mass index (BMI) of 30.6±6.7kg/m2. Mean adiponectin levels were 15.8±15µg/ml. Beta-blocker use, BMI, and blood urea nitrogen (BUN) were significant determinants of adiponectin levels by multivariate analysis. LV mass, structure, and LVEF were not related to adiponectin levels by multivariate analysis. Interestingly, the effect of beta-blocker therapy was most marked in non-obese patients with BMI < 30kg/m2. In conclusion, in chronic systolic HF patients, beta-blocker therapy is correlated with lower adiponectin levels, especially in non-obese patients. This relation should be taken into account when studying the complex role of adiponectin in chronic systolic HF.
doi:10.1016/j.amjcard.2009.12.015
PMCID: PMC2854672  PMID: 20381668
Adiponectin; chronic systolic heart failure; beta-blockers
20.  Activin A and Follistatin-like 3 determine the susceptibility of heart to ischemic injury 
Circulation  2009;120(16):1606-1615.
Background
TGF-β family cytokines have diverse actions in the maintenance of cardiac homeostasis. Activin A is a member of this family whose regulation and function in heart is not well understood at a molecular level. Follistatin-like 3 (Fstl3) is an extracellular regulator of Activin A protein, and its function in the heart is also unknown.
Methods and Results
We analyzed the expression of various TGF-β superfamily cytokines and their binding partners in mouse heart. Activin βA and Follistatin-like 3 (Fstl3) were upregulated in models of myocardial injury. Overexpression of Activin A with an adenoviral vector (Ad-actβA) or treatment with recombinant Activin A protein protected cultured myocytes from hypoxia/reoxygenation- induced apoptosis. Systemic overexpression of Activin A in mice, by intravenous injection of Ad-actβA, protected hearts from ischemia/reperfusion injury. Activin A induced the expression of Bcl-2, and ablation of Bcl-2 by siRNA abrogated its protective action in myocytes. The protective effect of Activin A on cultured myocytes was abolished by treatment with Fstl3 or by a pharmacological Activin receptor-Like Kinase (ALK) inhibitor. Cardiac specific Fstl3 knock-out mice showed significantly smaller infarcts after ischemia/reperfusion injury that was accompanied by reduced apoptosis.
Conclusions
Activin A and Fstl3 are induced in heart by myocardial stress. Activin A protects myocytes from death and this activity is antagonized by Fstl3. Thus, the relative expression levels of these factors following injury is a determinant of cell survival in the heart.
doi:10.1161/CIRCULATIONAHA.109.872200
PMCID: PMC2764796  PMID: 19805648
myocytes; apoptosis; reperfusion; Activin A; Follistatin-like 3
21.  Fast/Glycolytic Muscle Fiber Growth Reduces Fat Mass and Improves Metabolic Parameters in Obese Mice 
Cell metabolism  2008;7(2):159-172.
SUMMARY
In contrast to the well-established role of oxidative muscle fibers in regulating whole-body metabolism, little is known about the function of fast/glycolytic muscle fibers in these processes. Here, we generated a skeletal muscle-specific, conditional transgenic mouse expressing a constitutively active form of Akt1. Transgene activation led to muscle hypertrophy due to the growth of type IIb muscle fibers, which was accompanied by an increase in strength. Akt1 transgene induction in diet-induced obese mice led to reductions in body weight and fat mass, resolution of hepatic steatosis, and improved metabolic parameters. Akt1-mediated skeletal muscle growth opposed the effects of a high-fat/high-sucrose diet on transcript expression patterns in the liver and increased hepatic fatty acid oxidation and ketone body production. Our findings indicate that an increase in fast/glycolytic muscle mass can result in the regression of obesity and metabolic improvement through its ability to alter fatty acid oxidation in remote tissues.
doi:10.1016/j.cmet.2007.11.003
PMCID: PMC2828690  PMID: 18249175
22.  Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2—dependent mechanisms 
Nature medicine  2005;11(10):1096-1103.
Obesity-related disorders are associated with the development of ischemic heart disease. Adiponectin is a circulating adipose-derived cytokine that is downregulated in obese individuals and after myocardial infarction. Here, we examine the role of adiponectin in myocardial remodeling in response to acute injury. Ischemia-reperfusion in adiponectin-deficient (APN-KO) mice resulted in increased myocardial infarct size, myocardial apoptosis and tumor necrosis factor (TNF)-α expression compared with wild-type mice. Administration of adiponectin diminished infarct size, apoptosis and TNF-α production in both APN-KO and wild-type mice. In cultured cardiac cells, adiponectin inhibited apoptosis and TNF-α production. Dominant negative AMP-activated protein kinase (AMPK) reversed the inhibitory effects of adiponectin on apoptosis but had no effect on the suppressive effect of adiponectin on TNF-α production. Adiponectin induced cyclooxygenase (COX)-2–dependent synthesis of prostaglandin E2 in cardiac cells, and COX-2 inhibition reversed the inhibitory effects of adiponectin on TNF-α production and infarct size. These data suggest that adiponectin protects the heart from ischemia-reperfusion injury through both AMPK- and COX-2–dependent mechanisms.
doi:10.1038/nm1295
PMCID: PMC2828682  PMID: 16155579
23.  Adiponectin-mediated modulation of hypertrophic signals in the heart 
Nature medicine  2004;10(12):1384-1389.
Patients with diabetes and other obesity-linked conditions have increased susceptibility to cardiovascular disorders1. The adipocytokine adiponectin is decreased in patients with obesity-linked diseases2. Here, we found that pressure overload in adiponectin-deficient mice resulted in enhanced concentric cardiac hypertrophy and increased mortality that was associated with increased extracellular signal-regulated kinase (ERK) and diminished AMP-activated protein kinase (AMPK) signaling in the myocardium. Adenovirus-mediated supplemention of adiponectin attenuated cardiac hypertrophy in response to pressure overload in adiponectin-deficient, wild-type and diabetic db/db mice. In cultures of cardiac myocytes, adiponectin activated AMPK and inhibited agonist-stimulated hypertrophy and ERK activation. Transduction with a dominant-negative form of AMPK reversed these effects, suggesting that adiponectin inhibits hypertrophic signaling in the myocardium through activation of AMPK signaling. Adiponectin may have utility for the treatment of hypertrophic cardiomyopathy associated with diabetes and other obesity-related diseases.
doi:10.1038/nm1137
PMCID: PMC2828675  PMID: 15558058
24.  Adiponectin Promotes Revascularization of Ischemic Muscle through a Cyclooxygenase 2-Dependent Mechanism ▿ †  
Molecular and Cellular Biology  2009;29(13):3487-3499.
Adiponectin is a fat-derived plasma protein that has cardioprotective roles in obesity-linked diseases. Because cyclooxygenase 2 (COX-2) is an important modulator of endothelial function, we investigated the possible contribution of COX-2 to adiponectin-mediated vascular responses in a mouse hind limb model of vascular insufficiency. Ischemic insult increased COX-2 expression in endothelial cells of wild-type mice, but this induction was attenuated in adiponectin knockout mice. Ischemia-induced revascularization was impaired in mice in which the Cox-2 gene is deleted in Tie2-Cre-expressing cells. Adenovirus-mediated overexpression of adiponectin enhanced COX-2 expression and revascularization of ischemic limbs in control mice, but not in targeted Cox-2-deficient mice. In cultured endothelial cells, adiponectin protein increased COX-2 expression, and ablation of COX-2 abrogated the adiponectin-stimulated increases in endothelial cell migration, differentiation, and survival. Ablation of calreticulin (CRT) or its adaptor protein CD91 diminished adiponectin-stimulated COX-2 expression and endothelial cell responses. These observations provide evidence that adiponectin promotes endothelial cell function through CRT/CD91-mediated increases in COX-2 signaling. Thus, disruption of the adiponectin-COX-2 regulatory axis in endothelial cells could participate in the pathogenesis of obesity-related vascular diseases.
doi:10.1128/MCB.00126-09
PMCID: PMC2698754  PMID: 19398582
25.  FGF21 is an Akt-regulated myokine 
FEBS letters  2008;582(27):3805-3810.
FGF21 functions as a metabolic regulator. The FGF21 transcript is reported to be abundantly expressed in liver, but little is known about the regulation of FGF21 expression in other tissues. In this study, we show that levels of FGF21 protein expression were similar in skeletal muscle and liver from fasted mice. FGF21 transcript and protein expression were upregulated in gastrocnemius muscle of skeletal muscle-specific Akt1 transgenic mice. Serum concentration of FGF21 was also increased by Akt1 transgene activation. In cultured skeletal muscle cells, FGF21 expression and secretion was regulated by insulin, Akt transduction and LY294002. These data indicate that skeletal muscle is a source of FGF21 and that its expression is regulated by a PI3-kinase/Akt1 signaling pathway-dependent mechanism.
doi:10.1016/j.febslet.2008.10.021
PMCID: PMC2604129  PMID: 18948104
FGF21; Akt; metabolism; transcript; transgenic mice

Results 1-25 (37)