Search tips
Search criteria

Results 1-25 (33)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  The Effect of Malnutrition on Norovirus Infection 
mBio  2014;5(2):e01032-13.
Human noroviruses are the primary cause of severe childhood diarrhea in the United States, and they are of particular clinical importance in pediatric populations in the developing world. A major contributing factor to the general increased severity of infectious diseases in these regions is malnutrition—nutritional status shapes host immune responses and the composition of the host intestinal microbiota, both of which can influence the outcome of pathogenic infections. In terms of enteric norovirus infections, mucosal immunity and intestinal microbes are likely to contribute to the infection outcome in substantial ways. We probed these interactions using a murine model of malnutrition and murine norovirus infection. Our results reveal that malnutrition is associated with more severe norovirus infections as defined by weight loss, impaired control of norovirus infections, reduced antiviral antibody responses, loss of protective immunity, and enhanced viral evolution. Moreover, the microbiota is dramatically altered by malnutrition. Interestingly, murine norovirus infection also causes changes in the host microbial composition within the intestine but only in healthy mice. In fact, the infection-associated microbiota resembles the malnutrition-associated microbiota. Collectively, these findings represent an extensive characterization of a new malnutrition model of norovirus infection that will ultimately facilitate elucidation of the nutritionally regulated host parameters that predispose to more severe infections and impaired memory immune responses. In a broad sense, this model may provide insight into the reduced efficacy of oral vaccines in malnourished hosts and the potential for malnourished individuals to act as reservoirs of emergent virus strains.
Malnourished children in developing countries are susceptible to more severe infections than their healthy counterparts, in particular enteric infections that cause diarrhea. In order to probe the effects of malnutrition on an enteric infection in a well-controlled system devoid of other environmental and genetic variability, we studied norovirus infection in a mouse model. We have revealed that malnourished mice develop more severe norovirus infections and they fail to mount effective memory immunity to a secondary challenge. This is of particular importance because malnourished children generally mount less effective immune responses to oral vaccines, and we can now use our new model system to probe the immunological basis of this impairment. We have also determined that noroviruses evolve more readily in the face of malnutrition. Finally, both norovirus infection and malnutrition independently alter the composition of the intestinal microbiota in substantial and overlapping ways.
PMCID: PMC3958801  PMID: 24595373
2.  Potent Elastase Inhibitors from Cyanobacteria: Structural Basis and Mechanisms Mediating Cytoprotective and Anti-inflammatory Effects in Bronchial Epithelial Cells 
Journal of medicinal chemistry  2013;56(3):1276-1290.
We discovered new structural diversity to a prevalent, yet medicinally underappreciated, cyanobacterial protease inhibitor scaffold and undertook comprehensive protease profiling to reveal potent and selective elastase inhibition. SAR and X-ray cocrystal structure analysis allowed a detailed assessment of critical and tunable structural elements. To realize the therapeutic potential of these cyclodepsipeptides, we probed the cellular effects of a novel and representative family member, symplostatin 5 (1), which attenuated the downstream cellular effects of elastase in an epithelial lung airway model system, alleviating clinical hallmarks of chronic pulmonary diseases such as cell death, cell detachment and inflammation. This compound attenuated the effects of elastase on receptor activation, proteolytic processing of the adhesion protein ICAM-1, NF-κB activation and transcriptomic changes, including the expression of pro-inflammatory cytokines IL1A, IL1B and IL8. Compound 1 exhibited activity comparable to the clinically-approved elastase inhibitor sivelestat in short-term assays and demonstrated superior sustained activity in longer-term assays.
PMCID: PMC3624605  PMID: 23350733
3.  Human Polymorphisms in the Glutathione Transferase Zeta 1/Maleylacetoacetate Isomerase Gene Influence the Toxicokinetics of Dichloroacetate 
Journal of clinical pharmacology  2011;52(6):10.1177/0091270011405664.
Dichloroacetate (DCA), a chemical relevant to environmental science and allopathic medicine, is dehalogenated by the bifunctional enzyme glutathione transferase zeta (GSTz1) maleylacetoacetate isomerase (MAAI), the penultimate enzyme in the phenylalanine/tyrosine catabolic pathway. The authors postulated that polymorphisms in GSTz1/MAAI modify the toxicokinetics of DCA. GSTz1/MAAI haplotype significantly affected the kinetics and biotransformation of 1,2-13C-DCA when it was administered at either environmentally (μg/kg/d) or clinically (mg/kg/d) relevant doses. GSTz1/MAAI haplotype also influenced the urinary accumulation of potentially toxic tyrosine metabolites. Atomic modeling revealed that GSTz1/MAAI variants associated with the slowest rates of DCA metabolism induced structural changes in the enzyme homodimer, predicting protein instability or abnormal protein-protein interactions. Knowledge of the GSTz1/MAAI haplotype can be used prospectively to identify individuals at potential risk of DCA’s adverse side effects from environmental or clinical exposure or who may exhibit aberrant amino acid metabolism in response to dietary protein.
PMCID: PMC3786668  PMID: 21642471
dichloroacetate; glutathione transferase zeta; maleylacetoacetate isomerase; pharmacogenetics; toxicogenetics; tyrosine metabolism
4.  Disruption of the protein interaction between FAK and IGF-1R inhibits melanoma tumor growth 
Cell Cycle  2012;11(17):3250-3259.
FAK (focal adhesion kinase) and IGF-1R (insulin-like growth factor receptor-1) directly interact with each other and thereby activate crucial signaling pathways that benefit cancer cells. Inhibition of FAK and IGF-1R function has been shown to significantly decrease cancer cell proliferation and increase sensitivity to chemotherapy and radiation treatment. As a novel approach in human melanoma, we evaluated the effect of a small-molecule compound that disrupts the protein interaction of FAK and IGF-1R.
Previously, using virtual screening and functional testing, we identified a lead compound (INT2–31) that targets the known FAK-IGF-1R protein interaction site. We studied the ability of this compound to disrupt FAK-IGF-1R protein interactions, inhibit downstream signaling, decrease human melanoma cell proliferation, alter cell cycle progression, induce apoptosis and decrease tumor growth in vivo.
INT2–31 blocked the interaction of FAK and IGF-1R in vitro and in vivo in melanoma cells and tumor xenografts through precluding the activation of IRS-1, leading to reduced phosphorylation of AKT upon IGF-1 stimulation. As a result, INT2–31 significantly inhibited cell proliferation and viability (range 0.05–10 μM). More importantly, 15 mg/kg of INT2–31 given for 21 d via intraperitoneal injection disrupted the interaction of FAK and IGF-1R and effectively decreased phosphorylation of tumor AKT, resulting in significant melanoma tumor regression in vivo.
Our data suggest that the FAK-IGF-1R protein interaction is an important target, and disruption of this interaction with a novel small molecule (INT2–31) has potential anti-neoplastic therapeutic effects in human melanoma.
PMCID: PMC3466524  PMID: 22894899
small-molecule inhibitor; melanoma; FAK; IGF-1R
5.  Molecular Modeling Optimization of Anticoagulant Pyridine Derivatives 
Intravascular clotting remains a major health problem in the United States, the most prominent being deep vein thrombosis, pulmonary embolism and thromboembolic stroke. Previous reports on the use of pyridine derivatives in cardiovascular drug development encourage us to pursue new types of compounds based on a pyridine scaffold. Eleven pyridine derivatives (oximes, semicarbazones, N-oxides) previously synthesized in our laboratories were tested as anticoagulants on pooled normal plasma using the prothrombin time (PT) protocol. The best anticoagulant within the oxime series was compound AF4, within the oxime N-oxide series was compound AF4-N-Oxide, and within the semicarbazone series, compound MD1-30Y. We also used a molecular modeling approach to guide our efforts, and found that there was good correlation between coagulation data and computational energy scores. Molecular docking was performed to target the active site of thrombin with the DOCK v5.2 package. The results of molecular modeling indicate that improvement in anticoagulant activities can be expected by functionalization at the 3-position of the pyridine ring and by N-oxide formation. Results reported here prove the suitability of DOCK in the lead optimization process.
PMCID: PMC3752647  PMID: 18372200
pyridine oximes; pyridine semicarbazones; anticoagulants; molecular modeling; DOCK; thrombin
6.  Disruption of focal adhesion kinase and p53 interaction with small molecule compound R2 reactivated p53 and blocked tumor growth 
BMC Cancer  2013;13:342.
Focal Adhesion Kinase (FAK) is a 125 kDa non-receptor kinase that plays a major role in cancer cell survival and metastasis.
We performed computer modeling of the p53 peptide containing the site of interaction with FAK, predicted the peptide structure and docked it into the three-dimensional structure of the N-terminal domain of FAK involved in the complex with p53. We screened small molecule compounds that targeted the site of the FAK-p53 interaction and identified compounds (called Roslins, or R compounds) docked in silico to this site.
By different assays in isogenic HCT116p53+/+ and HCT116 p53-/- cells we identified a small molecule compound called Roslin 2 (R2) that bound FAK, disrupted the binding of FAK and p53 and decreased cancer cell viability and clonogenicity in a p53-dependent manner. In addition, dual-luciferase assays demonstrated that the R2 compound increased p53 transcriptional activity that was inhibited by FAK using p21, Mdm-2, and Bax-promoter targets. R2 also caused increased expression of p53 targets: p21, Mdm-2 and Bax proteins. Furthermore, R2 significantly decreased tumor growth, disrupted the complex of FAK and p53, and up-regulated p21 in HCT116 p53+/+ but not in HCT116 p53-/- xenografts in vivo. In addition, R2 sensitized HCT116p53+/+ cells to doxorubicin and 5-fluorouracil.
Thus, disruption of the FAK and p53 interaction with a novel small molecule reactivated p53 in cancer cells in vitro and in vivo and can be effectively used for development of FAK-p53 targeted cancer therapy approaches.
PMCID: PMC3712010  PMID: 23841915
Focal adhesion kinase; p53Cancer; Small molecule; p21; Tumor; Apoptosis
7.  Ancient evolutionary origin of diversified variable regions demonstrated by crystal structures of an immune-type receptor in amphioxus 
Nature immunology  2006;7(8):875-882.
Although the origins of genes encoding the rearranging binding receptors remain obscure, it is predicted that their ancestral forms were nonrearranging immunoglobulin-type domains. Variable region–containing chitin-binding proteins (VCBPs) are diversified immune-type molecules found in amphioxus (Branchiostoma floridae), an invertebrate that diverged early in deuterostome phylogeny. To study the potential evolutionary relationships between VCBPs and vertebrate adaptive immune receptors, we solved the structures of both a single V-type domain (to 1.15 Å) and a pair of V-type domains (to 1.8 Å) from VCBP3. The deduced structures show integral features of the ancestral variable-region fold as well as unique features of variable-region pairing in molecules that may reflect characteristics of ancestral forms of diversified immune receptors found in modern-day vertebrates.
PMCID: PMC3707131  PMID: 16799561
8.  Immunoglobulin variable regions in molecules exhibiting characteristics of innate and adaptive immune receptors 
Immunologic research  2007;38(0):294-304.
The antigen combining sites of immunoglobulin (Ig) and T cell antigen receptors (TCRs), which are present in all jawed vertebrates, consist of a paired variable (V) domain heterodimer that exhibits varying degrees of germline- and extraordinarily high levels of somatically-derived variation. The near limitless variation in receptor specificity on the surface of individual lymphocytes is the basis for clonal selection in the adaptive immune response. A basic question arises as to whether or not there are other forms of immune-type receptors in vertebrates as well as in invertebrates that derive immune specificity through sequence differences in V domains. Our laboratory has discovered two such families of molecules, the novel immune-type receptors and the variable region-containing chitin-binding proteins. Both families of molecules encode V domains that share some characteristics of adaptive immune receptors but likely mediate innate functions.
PMCID: PMC3690489  PMID: 17917037
Variable region; Immune phylogeny; Novel immune-type receptor; Immune diversity; Activating/inhibitory signaling motifs; NK function
9.  Islet Autoantigens: Structure, Function, Localization, and Regulation 
Cold Spring Harbor perspectives in medicine  2012;2(8):10.1101/cshperspect.a007658 a007658.
Islet autoantigens associated with autoimmune type 1 diabetes (T1D) are expressed in pancreatic β cells, although many show wider patterns of expression in the neuroendocrine system. Within pancreatic β cells, every T1D autoantigen is in one way or another linked to the secretory pathway. Together, these autoantigens play diverse roles in glucose regulation, metabolism of biogenic amines, as well as the regulation, formation, and packaging of secretory granules. The mechanism(s) by which immune tolerance to islet-cell antigens is lost during the development of T1D, remains unclear. Antigenic peptide creation for immune presentation may potentially link to the secretory biology of β cells in a number of ways, including proteasomal digestion of misfolded products, exocytosis, and endocytosis of cell-surface products, or antigen release from dying β cells during normal or pathological turnover. In this context, we evaluate the biochemical nature and immunogenicity of the major autoantigens in T1D including (pro)insulin, GAD65, ZnT8, IA2, and ICA69.
PMCID: PMC3405822  PMID: 22908193
10.  A small molecule focal adhesion kinase (FAK) inhibitor, targeting Y397 site: 1-(2-hydroxyethyl) -3, 5, 7-triaza-1-azoniatricyclo [,7]decane; bromide effectively inhibits FAK autophosphorylation activity and decreases cancer cell viability, clonogenicity and tumor growth in vivo 
Carcinogenesis  2012;33(5):1004-1013.
Focal adhesion kinase (FAK) is a protein tyrosine kinase that is overexpressed in most solid types of tumors and plays an important role in the survival signaling. Recently, we have developed a novel computer modeling combined with a functional assay approach to target the main autophosphorylation site of FAK (Y397). Using these approaches, we identified 1-(2-hydroxyethyl)-3, 5, 7-triaza-1-azoniatricyclo [,7]decane; bromide, called Y11, a small molecule inhibitor targeting Y397 site of FAK. Y11 significantly and specifically decreased FAK autophosphorylation, directly bound to the N-terminal domain of FAK. In addition, Y11 decreased Y397-FAK autophosphorylation, inhibited viability and clonogenicity of colon SW620 and breast BT474 cancer cells and increased detachment and apoptosis in vitro. Moreover, Y11 significantly decreased tumor growth in the colon cancer cell mouse xenograft model. Finally, tumors from the Y11-treated mice demonstrated decreased Y397-FAK autophosphorylation and activation of poly (ADP ribose) polymerase and caspase-3. Thus, targeting the major autophosphorylation site of FAK with Y11 inhibitor is critical for development of cancer therapeutics and carcinogenesis field.
PMCID: PMC3334519  PMID: 22402131
11.  Genomic and functional characterization of the diverse immunoglobulin domain-containing protein (DICP) family 
Genomics  2012;99(5):282-291.
A heretofore-unrecognized multigene family encoding diverse immunoglobulin (Ig) domain-containing proteins (DICPs) was identified in the zebrafish genome. Twenty-nine distinct loci mapping to three chromosomal regions encode receptor-type structures possessing two classes of Ig ectodomains (D1 and D2). The sequence and number of Ig domains, transmembrane regions and signaling motifs varies between DICPs. Interindividual polymorphism and alternative RNA processing contribute to DICP diversity. Molecular models indicate that most D1 domains are of the variable (V) type; D2 domains are Ig-like. Sequence differences between D1 domains are concentrated in hypervariable regions on the front sheet strands of the Ig fold. Recombinant DICP Ig domains bind lipids, a property shared by mammalian CD300 and TREM family members. These findings suggest that novel multigene families encoding diversified immune receptors have arisen in different vertebrate lineages and effect parallel patterns of ligand recognition that potentially impact species-specific advantages.
PMCID: PMC3351558  PMID: 22386706
zebrafish; innate immunity; lipid binding
12.  A Small-molecule Inhibitor, 5′-O-Tritylthymidine, targets FAK and Mdm-2 Interaction, and Blocks Breast and Colon Tumorigenesis in vivo 
Focal Adhesion Kinase (FAK) is overexpressed in many types of tumors and plays an important role in survival. We developed a novel approach, targeting FAK-protein interactions by computer modeling and screening of NCI small molecule drug database. In this report we targeted FAK and Mdm-2 protein interaction to decrease tumor growth. By macromolecular modeling we found a model of FAK and Mdm-2 interaction and performed screening of >200,000 small molecule compounds from NCI database with drug-like characteristics, targeting the FAK-Mdm-2 interaction. We identified 5′-O-Tritylthymidine, called M13 compound that significantly decreased viability in different cancer cells. M13 was docked into the pocket of FAK and Mdm-2 interaction and was directly bound to the FAK-N terminal domain by ForteBio Octet assay. In addition, M13 compound affected FAK and Mdm-2 levels and decreased complex of FAK and Mdm-2 proteins in breast and colon cancer cells. M13 re-activated p53 activity inhibited by FAK with Mdm-2 promoter. M13 decreased viability, clonogenicity, increased detachment and apoptosis in a dose-dependent manner in BT474 breast and in HCT116 colon cancer cells in vitro. M13 decreased FAK, activated p53 and caspase-8 in both cell lines. In addition, M13 decreased breast and colon tumor growth in vivo. M13 activated p53 and decreased FAK in tumor samples consistent with decreased tumor growth. The data demonstrate a novel approach for targeting FAK and Mdm-2 protein interaction, provide a model of FAK and Mdm-2 interaction, identify M13 compound targeting this interaction and decreasing tumor growth that is critical for future targeted therapeutics.
PMCID: PMC3625481  PMID: 22292771
Apoptosis; Focal Adhesion Kinase; Mdm-2; Small molecule compound; p53; Tumor growth
13.  Mitoxantrone Targets the ATP-binding Site of FAK, Binds the FAK Kinase Domain and Decreases FAK, Pyk-2, c-Src, and IGF-1R, In Vitro Kinase Activities 
Focal Adhesion Kinase (FAK) is a non-receptor kinase that is overexpressed in many types of tumors and plays a key role in cell adhesion, spreading, motility, proliferation, invasion, angiogenesis, and survival. Recently, FAK has been proposed as a target for cancer therapy, and we performed computer modeling and screening of the National Cancer Institute (NCI) small molecule compounds database to target the ATP-binding site of FAK, K454. More than 140,000 small molecule compounds were docked into the crystal structure of the kinase domain of FAK in 100 different orientations using DOCK5.1 that identified small molecule compounds, targeting the K454 site, called A-compounds. To find the therapeutic efficacy of these compounds, we examined the effect of twenty small molecule compounds on cell viability by MTT assays in different cancer cell lines. One compound, A18 (1,4-bis(diethylamino)-5,8-dihydroxy anthraquinon) was a mitoxantrone derivative and significantly decreased viability in most of the cells comparable to the to the level of FAK kinase inhibitors TAE-226 (Novartis, Inc) and PF-573,228 (Pfizer). The A18 compound specifically blocked autophosphorylation of FAK like TAE-226 and PF-228. ForteBio Octet Binding assay demonstrated that mitoxantrone (1,4-dihydroxy-5,8-bis[2-(2-hydroxyethylamino) ethylamino] anthracene-9,10-dione directly binds the FAK-kinase domain. In addition, mitoxantrone significantly decreased the viability of breast cancer cells in a dose-dependent manner and inhibited the kinase activity of FAK and Y56/577 FAK phosphorylation at 10-20 μM. Mitoxantrone did not affect phosphorylation of EGFR, but decreased Pyk-2, c-Src, and IGF-1R kinase activities. The data demonstrate that mitotraxone decreases cancer viability, binds FAK-Kinase domain, inhibits its kinase activity, and also inhibits in vitro kinase activities of Pyk-2 and IGF-1R. Thus, this novel function of the mitoxantrone drug can be critical for future development of anti-cancer agents and FAK-targeted therapy research.
PMCID: PMC3625494  PMID: 22292772
ATP; cancer; enzyme activity; FAK; Focal adhesion kinase; kinase; therapy
14.  Characterization of the 8-hydroxyquinoline scaffold for inhibitors of West Nile virus serine protease 
Antiviral Research  2012;94(1):18-24.
West Nile virus (WNV) is a mosquito-borne member of flaviviruses that causes significant morbidity and mortality especially among children. There is currently no approved vaccine or antiviral therapeutic for human use. In a previous study, we described compounds containing the 8-hydroxyquinoline (8-HQ) scaffold as inhibitors of West Nile virus serine protease (NS2B/NS3pro) in a high throughput screen (HTS) using the purified WNV NS2B/NS3pro as the target. In this study, we analyzed potencies of some commercially available as well as chemically synthesized derivatives of 8-HQ by biochemical assays. An insight into the contribution of various substitutions of 8-HQ moiety for inhibition of the protease activity was revealed. Most importantly, the substitution of the N1 of the 8-HQ ring by –CH– in compound 26 significantly reduced the inhibition of the viral protease by this naphthalen-1-ol derivative. The kinetic constant (Ki) for the most potent 8-HQ inhibitor (compound 14) with an IC50 value of 2.01 ± 0.08 μM using the tetra-peptide substrate was determined to be 5.8 μM. This compound inhibits the WNV NS2B/NS3pro by a competitive mode of inhibition which is supported by molecular modeling.
PMCID: PMC3331929  PMID: 22343093
15.  Crystallization and preliminary X-ray analysis of the human long myosin light-chain kinase 1-specific domain IgCAM3 
To gain insight into the structure of the IgCAM3 domain, the IgCAM3 domain of MLCK1 has been expressed, purified and crystallized.
Myosin light-chain kinase-dependent tight junction regulation is a critical event in inflammatory cytokine-induced increases in epithelial paracellular permeability. MLCK is expressed in human intestinal epithelium as two isoforms, long MLCK1 and long MLCK2, and MLCK1 is specifically localized to the tight junction, where it regulates paracellular permeability. The sole difference between these long MLCK splice variants is the presence of an immunoglobulin-like cell-adhesion molecule domain, IgCAM3, in MLCK1. To gain insight into the structure of the IgCAM3 domain, the IgCAM3 domain of MLCK1 has been expressed, purified and crystallized. Preliminary X-ray diffraction data were collected to 2.0 Å resolution and were consistent with the primitive trigonal space group P212121.
PMCID: PMC3034612  PMID: 21301090
IgCAM3 domain; myosin light-chain kinase 1
16.  Structure-based selection of small molecules to alter allele-specific MHC class II antigen presentation 
Class II major histocompatability molecules are the primary susceptibility locus for many autoimmune disorders including type 1 diabetes. Human DQ8 and I-Ag7, in the non-obese diabetic (NOD) mouse model of spontaneous autoimmune diabetes, confers diabetes risk by modulating presentation of specific islet peptides in the thymus and periphery. We utilized an in silico molecular docking program to screen a large “drug-like” chemical library to define small molecules capable of occupying specific structural pockets along the I-Ag7 binding groove with the objective of influencing presentation of the autoantigen insulin B:9–23 to T cells. In this study we demonstrate using both murine and human cells that small molecules can enhance or inhibit specific T cell receptor (TCR) signaling in the presence of cognate target peptides based upon the structural pocket targeted. The influence of compounds on the TCR response was pocket dependent with pocket 1 and 6 compounds inhibiting responses and molecules directed at pocket 9 enhancing response to peptide. At nanomolar concentrations, the inhibitory molecules block insulin B:9–23 peptide, endogenous insulin, and islet stimulated T cell responses. Glyphosine, a pocket 9 compound, enhances insulin peptide presentation to T cells at concentrations as low as 10 nM, upregulates IL-10 secretion, and prevents diabetes in NOD mice. These studies present a novel method for identifying small molecules capable of both stimulating and inhibiting T cell responses with potentially therapeutic applications.
PMCID: PMC3221928  PMID: 22043012
17.  A Novel Strategy to Inhibit FAK and IGF-1R Decreases Growth of Pancreatic Cancer Xenografts 
Molecular carcinogenesis  2010;49(2):200-209.
Deregulation of insulin-like growth factor-1 receptor (IGF-1R) and focal adhesion kinase (FAK) signaling pathways plays an important role in cancer cell proliferation and metastasis. In pancreatic cancer cells, the crosstalk and compensatory mechanisms between these two pathways reduce the efficacy of the treatments that target only one of the pathways. Ablation of IGF-1R signaling by siRNA showed minimal effects on the survival and growth of pancreatic cancer cells. An increased activity of FAK pathway was seen in these cells after IGF-1R knockdown. Further inhibition of FAK pathway using Y15 significantly decreased cell survival, adhesion, and promoted apoptosis. The combination of Y15 treatment and IGF-1R knockdown also showed significant antitumor effect in vivo. The current study demonstrates the importance of dual inhibition of both these signaling pathways as a novel strategy to decrease both in vitro and in vivo growth of human pancreatic cancer.
PMCID: PMC3136037  PMID: 19885860
FAK; IGF-1R; pancreatic cancer
18.  A New Zealand Black-Derived Locus Suppresses Chronic Graft-versus-Host Disease and Autoantibody Production through Nonlymphoid Bone Marrow-Derived Cells 
The development of lupus pathogenesis results from the integration of susceptibility and resistance genes. We have used a chronic graft-versus-host disease (cGVHD) model to characterize a suppressive locus at the telomeric end of the NZM2410-derived Sle2 susceptibility locus, which we named Sle2c2. cGVHD is induced normally in Sle2c2-expressing mice, but it is not sustained. The analysis of mixed bone marrow chimeras revealed that cGVHD resistance was eliminated by non-B non-T hematopoietic cells expressing the B6 allele, suggesting that resistance is mediated by this same cell type. Furthermore, Sle2c2 expression was associated with an increased number and activation of the CD11b+ GR-1+ subset of granulocytes before and in the early stage of cGVHD induction. We have mapped the Sle2c2 critical interval to a 6-Mb region that contains the Cfs3r gene, which encodes for the G-CSFR, and its NZM2410 allele carries a nonsynonymous mutation. The G-CSFR–G-CSF pathway has been previously implicated in the regulation of GVHD, and our functional data on Sle2c2 suppression suggest a novel regulation of T cell-induced systemic autoimmunity through myeloid-derived suppressor cells. The validation of Csf3r as the causative gene for Sle2c2 and the further characterization of the Sle2c2 MDSCs promise to unveil new mechanisms by which lupus pathogenesis is regulated.
PMCID: PMC3131784  PMID: 21335485
19.  Functional Expression of Human Adenine Nucleotide Translocase 4 in Saccharomyces Cerevisiae 
PLoS ONE  2011;6(4):e19250.
The adenine nucleotide translocase (ANT) mediates the exchange of ADP and ATP across the inner mitochondrial membrane. The human genome encodes multiple ANT isoforms that are expressed in a tissue-specific manner. Recently a novel germ cell-specific member of the ANT family, ANT4 (SLC25A31) was identified. Although it is known that targeted depletion of ANT4 in mice resulted in male infertility, the functional biochemical differences between ANT4 and other somatic ANT isoforms remain undetermined. To gain insight into ANT4, we expressed human ANT4 (hANT4) in yeast mitochondria. Unlike the somatic ANT proteins, expression of hANT4 failed to complement an AAC-deficient yeast strain for growth on media requiring mitochondrial respiration. Moreover, overexpression of hANT4 from a multi-copy plasmid interfered with optimal yeast growth. However, mutation of specific amino acids of hANT4 improved yeast mitochondrial expression and supported growth of the AAC-deficient yeast on non-fermentable carbon sources. The mutations affected amino acids predicted to interact with phospholipids, suggesting the importance of lipid interactions for function of this protein. Each mutant hANT4 and the somatic hANTs exhibited similar ADP/ATP exchange kinetics. These data define common and distinct biochemical characteristics of ANT4 in comparison to ANT1, 2 and 3 providing a basis for study of its unique adaptation to germ cells.
PMCID: PMC3080916  PMID: 21532989
20.  DNA Polymerase β as a Novel Target for Chemotherapeutic Intervention of Colorectal Cancer 
PLoS ONE  2011;6(2):e16691.
Chemoprevention presents a major strategy for the medical management of colorectal cancer. Most drugs used for colorectal cancer therapy induce DNA-alkylation damage, which is primarily repaired by the base excision repair (BER) pathway. Thus, blockade of BER pathway is an attractive option to inhibit the spread of colorectal cancer. Using an in silico approach, we performed a structure-based screen by docking small-molecules onto DNA polymerase β (Pol-β) and identified a potent anti-Pol-β compound, NSC-124854. Our goal was to examine whether NSC-124854 could enhance the therapeutic efficacy of DNA-alkylating agent, Temozolomide (TMZ), by blocking BER. First, we determined the specificity of NSC-124854 for Pol-β by examining in vitro activities of APE1, Fen1, DNA ligase I, and Pol-β-directed single nucleotide (SN)- and long-patch (LP)-BER. Second, we investigated the effect of NSC-124854 on the efficacy of TMZ to inhibit the growth of mismatch repair (MMR)-deficient and MMR-proficient colon cancer cell lines using in vitro clonogenic assays. Third, we explored the effect of NSC-124854 on TMZ-induced in vivo tumor growth inhibition of MMR-deficient and MMR-proficient colonic xenografts implanted in female homozygous SCID mice. Our data showed that NSC-124854 has high specificity to Pol-β and blocked Pol-β-directed SN- and LP-BER activities in in vitro reconstituted system. Furthermore, NSC-124854 effectively induced the sensitivity of TMZ to MMR-deficient and MMR-proficient colon cancer cells both in vitro cell culture and in vivo xenograft models. Our findings suggest a potential novel strategy for the development of highly specific structure-based inhibitor for the prevention of colonic tumor progression.
PMCID: PMC3032781  PMID: 21311763
21.  Recognition of additional roles for immunoglobulin domains in immune function 
Seminars in immunology  2009;22(1):17-24.
Characterization of immune receptors found in phylogenetically disparate species at the genetic, structural and functional levels has provided unique insight into the evolutionary acquisition of immune function. The roles of variable- and intermediate-type immunoglobulin (Ig) domains in direct recognition of ligands and other functions are far wider than previously anticipated. Common mechanisms of multigene family diversification and expansion as well as unique adaptations that relate to function continue to provide unique insight into the numerous patterns, processes and complex interactions that regulate the host response to infectious challenge.
PMCID: PMC2823954  PMID: 20004115
immunoglobulin domain; functional diversity; evolutionary variation; chimeric function; adaptive and innate immunity
22.  A novel inhibitor of DNA polymerase β enhances the ability of Temozolomide to impair the growth of colon cancer cells 
Molecular cancer research : MCR  2009;7(12):1973-1983.
The recent emerging concept to sensitize cancer cells to DNA-alkylating drugs is by inhibiting various proteins in the base excision repair (BER) pathway. In the present study, we used structure-based molecular docking of DNA polymerase β (Pol-β) and identified a potent small molecular weight inhibitor (SMI), NSC-666715. We determined the specificity of this SMI for Pol-β by using in vitro activities of APE1, Fen1, DNA ligase I, and Pol-β-directed single nucleotide (SN)- and long-patch (LP)-BER. The binding specificity of NSC-666715 with Pol-β was also determined by using fluorescence anisotropy. The effect of NSC-666715 on the cytotoxicity of the DNA-alkylating drug, Temozolomide (TMZ), to colon cancer cells was determined by in vitro clonogenic and in vivo xenograft assays. The reduction in tumor growth was higher in the combination treatment relative to untreated or monotherapy treatment. NSC-666715 showed a high specificity for blocking Pol-β activity. It blocked Pol-β-directed SN- and LP-BER without affecting the activity of APE1, Fen1 and DNA ligase I. Fluorescence anisotropy data suggested that NSC-666715 directly and specifically interacts with Pol-β and interferes with binding to damaged DNA. NSC-666715 drastically induces the sensitivity of TMZ to colon cancer cells both in vitro and in vivo assays. The results further suggest that the disruption of BER by NSC-666715 negates its contribution to drug-resistance and bypasses other resistance factors, such as mismatch repair defects. Our findings provide the “proof-of-concept” for the development of highly specific and thus safer structure-based inhibitors for the prevention of tumor progression and/or treatment of colorectal cancer.
PMCID: PMC2796282  PMID: 19996303
Adenomatous polyposis coli; DNA polymerase β; small molecular weight inhibitors; colorectal cancer; chemotherapeutic intervention
23.  Targeting of the protein interaction site between FAK and IGF-1R 
The interaction of focal adhesion kinase (FAK) and insulin-like growth factor-1 receptor (IGF-1R) plays an important role in cancer cell survival. Targeting this interaction with small molecule drugs could be a novel strategy in cancer therapy. By a series of pull-down assay using GST-tagged FAK fragments and His-tagged IGF-1R intracellular fragments, we showed that the FAK-NT2 (aa 127–243) domain directly interacts with the N-terminal part of the IGF-1R intracellular domain. Overexpressed FAK-NT2 domain was also shown to co-localize with IGF-1R in pancreatic cells. Computational modeling was used to predict the biding configuration of these two domains and to screen for small molecules binding to the interaction site. This strategy successfully identified a lead compound that disrupts FAK/IGF-1R interaction.
PMCID: PMC2742998  PMID: 19664602
24.  The Small Molecule Chloropyramine Hydrochloride (C4) Targets the Binding Site of Focal Adhesion Kinase and Vascular Endothelial Growth Factor Receptor 3 and Suppresses Breast Cancer Growth in vivo 
Journal of medicinal chemistry  2009;52(15):4716-4724.
FAK is a tyrosine kinase that functions as a key orchestrator of signals leading to invasion and metastasis. Since FAK interacts directly with a number of critical proteins involved in survival signaling in tumor cells, we hypothesized that targeting a key protein-protein interface with drug-like small molecules was a feasible strategy for inhibiting tumor growth. In this study, we targeted the protein-protein interface between FAK and VEGFR-3 and identified compound C4 (chloropyramine hydrochloride) as a drug capable of 1) inhibiting the biochemical function of VEGFR-3 and FAK, 2) inhibiting proliferation of a diverse set of cancer cell types in vitro, and 3) reducing tumor growth in vivo. Chloropyramine hydrochloride reduced tumor growth as a single agent, while concomitant administration with doxorubicin had a pronounced synergistic effect. Our data demonstrate that the FAK-VEGFR-3 interaction can be targeted by small drug-like molecules and this interaction can provide the basis for highly-specific novel cancer therapeutics.
PMCID: PMC2765121  PMID: 19610651
25.  Identification of Enoxacin as an Inhibitor of Osteoclast Formation and Bone Resorption by Structure-Based Virtual Screening 
Journal of medicinal chemistry  2009;52(16):5144-5151.
An interaction between the B2 subunit of vacuolar H+-ATPase (V-ATPase) and microfilaments is required for osteoclast bone resorption. An atomic homology model of the actin binding site on B2 was generated and molecular docking simulations were performed. Enoxacin, a fluoroquinolone antibiotic, was identified and in vitro testing demonstrated that enoxacin blocked binding between purified B2 and microfilaments. Enoxacin dose dependently reduced the number of osteoclasts differentiating in mouse marrow cultures stimulated with 1,25-dihydroxyvitamin D3, as well as markers of osteoclast activity, and the number of resorption lacunae formed on bone slices. Enoxacin inhibited osteoclast formation at concentrations where osteoblast formation was not altered. In summary, enoxacin is a novel small molecule inhibitor of osteoclast bone resorption that acts by an unique mechanism and is therefore an attractive lead molecule for the development of a new class of antiosteoclastic agents.
PMCID: PMC2889180  PMID: 19630402

Results 1-25 (33)