PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Post-Mortem Tissue Biopsies Obtained at Minimally Invasive Autopsy: An RNA-Quality Analysis 
PLoS ONE  2014;9(12):e115675.
Introduction
Bereaved relatives often refuse to give consent for post-mortem investigation of deceased cancer patients, mainly because of the mutilation due to conventional autopsy (CA). Minimally invasive autopsy (MIA) may be a more acceptable alternative and, if implemented in clinical practice, creates an opportunity to more often obtain post-mortem tissue samples of (recurred) primary tumors and metastases for molecular research. As a measure for tissue quality for molecular studies, we hereby present a feasibility study, comparing the RNA quality of MIA and CA samples, and fresh frozen samples as reference.
Materials and methods
Tissue samples of heart, liver and kidney were prospectively collected from 24 MIAs followed by CA, and compared to corresponding archival fresh frozen tissue. After RNA isolation and RT-qPCR, RNA integrity numbers (RIN) and GAPDH expression (six amplicon sizes ranging from 71 to 530 base pairs) were measured. RIN values and GAPDH Cq values were analyzed and compared between all sample groups and post-mortem intervals (PMI).
Results
RIN values in MIA samples were significantly higher than those in CA samples. GAPDH was expressed significantly higher in MIA samples than in CA samples and 530 bp PCR products could be measured in all cases. GAPDH expression was significantly lower in samples with PMI >15 hours. As expected, the samples of the fresh frozen reference standard performed best in all analyses.
Conclusion
MIA samples showed better RNA quality than CA samples, probably due to shorter PMI. Both had lower RNA quality and expression levels than fresh frozen tissue, however, remaining GAPDH RNA was still sufficiently intact. Therefore, other highly expressed genes are most likely also detectable. Gene array analysis should be performed to gain insight into the quality of entire post-mortem genomes. Reducing PMI will further improve the feasibility of demanding molecular research on post-mortem tissues, this is most likely more feasible with MIA than CA.
doi:10.1371/journal.pone.0115675
PMCID: PMC4274113  PMID: 25531551
2.  SRY mutation analysis by next generation (deep) sequencing in a cohort of chromosomal Disorders of Sex Development (DSD) patients with a mosaic karyotype 
BMC Medical Genetics  2012;13:108.
Background
The presence of the Y-chromosome or Y chromosome-derived material is seen in 4-60% of Turner syndrome patients (Chromosomal Disorders of Sex Development (DSD)). DSD patients with specific Y-chromosomal material in their karyotype, the GonadoBlastoma on the Y-chromosome (GBY) region, have an increased risk of developing type II germ cell tumors/cancer (GCC), most likely related to TSPY. The Sex determining Region on the Y gene (SRY) is located on the short arm of the Y-chromosome and is the crucial switch that initiates testis determination and subsequent male development. Mutations in this gene are responsible for sex reversal in approximately 10-15% of 46,XY pure gonadal dysgenesis (46,XY DSD) cases. The majority of the mutations described are located in the central HMG domain, which is involved in the binding and bending of the DNA and harbors two nuclear localization signals. SRY mutations have also been found in a small number of patients with a 45,X/46,XY karyotype and might play a role in the maldevelopment of the gonads.
Methods
To thoroughly investigate the presence of possible SRY gene mutations in mosaic DSD patients, we performed next generation (deep) sequencing on the genomic DNA of fourteen independent patients (twelve 45,X/46,XY, one 45,X/46,XX/46,XY, and one 46,XX/46,XY).
Results and conclusions
The results demonstrate that aberrations in SRY are rare in mosaic DSD patients and therefore do not play a significant role in the etiology of the disease.
doi:10.1186/1471-2350-13-108
PMCID: PMC3538515  PMID: 23157850
Disorders of Sex Development (DSD); Chromosomal-DSD; SRY; Next generation (deep) sequencing; Mutation
3.  Prevalence of c-KIT Mutations in Gonadoblastoma and Dysgerminomas of Patients with Disorders of Sex Development (DSD) and Ovarian Dysgerminomas 
PLoS ONE  2012;7(8):e43952.
Activating c-KIT mutations (exons 11 and 17) are found in 10–40% of testicular seminomas, the majority being missense point mutations (codon 816). Malignant ovarian dysgerminomas represent ∼3% of all ovarian cancers in Western countries, resembling testicular seminomas, regarding chromosomal aberrations and c-KIT mutations. DSD patients with specific Y-sequences have an increased risk for Type II Germ Cell Tumor/Cancer, with gonadoblastoma as precursor progressing to dysgerminoma. Here we present analysis of c-KIT exon 8, 9, 11, 13 and 17, and PDGFRA exon 12, 14 and 18 by conventional sequencing together with mutational analysis of c-KIT codon 816 by a sensitive and specific LightCycler melting curve analysis, confirmed by sequencing. The results are combined with data on TSPY and OCT3/4 expression in a series of 16 DSD patients presenting with gonadoblastoma and dysgerminoma and 15 patients presenting pure ovarian dysgerminomas without DSD. c-KIT codon 816 mutations were detected in five out of the total of 31 cases (all found in pure ovarian dysgerminomas). A synonymous SNP (rs 5578615) was detected in two patients, one DSD patient (with bilateral disease) and one patient with dysgerminoma. Next to these, three codon N822K mutations were detected in the group of 15 pure ovarian dysgerminomas. In total activating c-KIT mutations were found in 53% of ovarian dysgerminomas without DSD. In the group of 16 DSD cases a N505I and D820E mutation was found in a single tumor of a patient with gonadoblastoma and dysgerminoma. No PDGFRA mutations were found. Positive OCT3/4 staining was present in all gonadoblastomas and dysgerminomas investigated, TSPY expression was only seen in the gonadoblastoma/dysgerminoma lesions of the 16 DSD patients. This data supports the existence of two distinct but parallel pathways in the development of dysgerminoma, in which mutational status of c-KIT might parallel the presence of TSPY.
doi:10.1371/journal.pone.0043952
PMCID: PMC3429439  PMID: 22937135
4.  A 46,XY Female DSD Patient with Bilateral Gonadoblastoma, a Novel SRY Missense Mutation Combined with a WT1 KTS Splice-Site Mutation 
PLoS ONE  2012;7(7):e40858.
Patients with Disorders of Sex Development (DSD), especially those with gonadal dysgenesis and hypovirilization are at risk of developing malignant type II germ cell tumors/cancer (GCC) (seminoma/dysgerminoma and nonseminoma), with either carcinoma in situ (CIS) or gonadoblastoma (GB) as precursor lesion. In 10–15% of 46,XY gonadal dysgenesis cases (i.e., Swyer syndrome), SRY mutations, residing in the HMG (High Mobility Group) domain, are found to affect nuclear transport or binding to and bending of DNA. Frasier syndrome (FS) is characterized by gonadal dysgenesis with a high risk for development of GB as well as chronic renal failure in early adulthood, and is known to arise from a splice site mutation in intron 9 of the Wilms’ tumor 1 gene (WT1). Mutations in SRY as well as WT1 can lead to diminished expression and function of SRY, resulting in sub-optimal SOX9 expression, Sertoli cell formation and subsequent lack of proper testicular development. Embryonic germ cells residing in this unfavourable micro-environment have an increased risk for malignant transformation. Here a unique case of a phenotypically normal female (age 22 years) is reported, presenting with primary amenorrhoea, later diagnosed as hypergonadotropic hypogonadism on the basis of 46,XY gonadal dygenesis with a novel missense mutation in SRY. Functional in vitro studies showed no convincing protein malfunctioning. Laparoscopic examination revealed streak ovaries and a normal, but small, uterus. Pathological examination demonstrated bilateral GB and dysgerminoma, confirmed by immunohistochemistry. Occurrence of a delayed progressive kidney failure (focal segmental glomerular sclerosis) triggered analysis of WT1, revealing a pathogenic splice–site mutation in intron 9. Analysis of the SRY gene in an additional five FS cases did not reveal any mutations. The case presented shows the importance of multi-gene based diagnosis of DSD patients, allowing early diagnosis and treatment, thus preventing putative development of an invasive cancer.
doi:10.1371/journal.pone.0040858
PMCID: PMC3399878  PMID: 22815844
5.  Delayed Recognition of Disorders of Sex Development (DSD): A Missed Opportunity for Early Diagnosis of Malignant Germ Cell Tumors 
Disorders of sex development (DSD) are defined as a congenital condition in which development of chromosomal, gonadal or anatomical sex is atypical. DSD patients with gonadal dysgenesis or hypovirilization, containing part of the Y chromosome (GBY), have an increased risk for malignant type II germ cell tumors (GCTs: seminomas and nonseminomas). DSD may be diagnosed in newborns (e.g., ambiguous genitalia), or later in life, even at or after puberty. Here we describe three independent male patients with a GCT; two were retrospectively recognized as DSD, based on the histological identification of both carcinoma in situ and gonadoblastoma in a single gonad as the cancer precursor. Hypospadias and cryptorchidism in their history are consistent with this conclusion. The power of recognition of these parameters is demonstrated by the third patient, in which the precursor lesion was diagnosed before progression to invasiveness. Early recognition based on these clinical parameters could have prevented development of (metastatic) cancer, to be treated by systemic therapy. All three patients showed a normal male 46,XY karyotype, without obvious genetic rearrangements by high-resolution whole-genome copy number analysis. These cases demonstrate overlap between DSD and the so-called testicular dysgenesis syndrome (TDS), of significant relevance for identification of individuals at increased risk for development of a malignant GCT.
doi:10.1155/2012/671209
PMCID: PMC3272341  PMID: 22315593
6.  A novel SRY missense mutation affecting nuclear import in a 46,XY female patient with bilateral gonadoblastoma 
European Journal of Human Genetics  2009;17(12):1642-1649.
Patients with disorders of sex development (DSD), especially those with gonadal dysgenesis and hypovirilization, are at risk of developing the so-called type II germ cell tumors (GCTs). Both carcinoma in situ and gonadoblastoma (GB) can be the precursor lesion, resulting in a seminomatous or non-seminomatous invasive cancer. SRY mutations residing in the HMG domain are found in 10–15% of 46,XY gonadal dysgenesis cases. This domain contains two nuclear localization signals (NLSs). In this study, we report a unique case of a phenotypical normal woman, diagnosed as a patient with 46,XY gonadal dysgenesis, with an NLS missense mutation, on the basis of the histological diagnosis of a unilateral GB. The normal role of SRY in gonadal development is the upregulation of SOX9 expression. The premalignant lesion of the initially removed gonad was positive for OCT3/4, TSPY and stem cell factor in germ cells, and for FOXL2 in the stromal component (ie, granulosa cells), but not for SOX9. On the basis of these findings, prophylactical gonadectomy of the other gonad was performed, also showing a GB lesion positive for both FOXL2 (ovary) and SOX9 (testis). The identified W70L mutation in the SRY gene resulted in a 50% reduction in the nuclear accumulation of the mutant protein compared with wild type. This likely explains the diminished SOX9 expression, and therefore the lack of proper Sertoli cell differentiation during development. This case shows the value of the proper diagnosis of human GCTs in identification of patients with DSD, which allows subsequent early diagnosis and prevention of the development of an invasive cancer, likely to be treated by chemotherapy at young age.
doi:10.1038/ejhg.2009.96
PMCID: PMC2987026  PMID: 19513096
disorders of sex development; germ cell tumors; gonadoblastoma; SRY
7.  The sentinel node procedure in colon carcinoma: a multi-centre study in The Netherlands 
Background
Lymph node status is the most important predictive factor in colorectal carcinoma. Recurrences occur in 20% of the patients without lymph node metastases. The sentinel lymph node (SLN) biopsy is a tool to facilitate identification of micrometastatic disease and aberrant lymphatic drainage. We studied the feasibility of in vivo SLN detection in a multi-centre setting and evaluated nodal micro-staging using immunohistochemistry (IHC).
Materials and methods
Sub-serosal injection with Patent Blue dye was used in the SLN procedure in 69 patients operated for localized colon cancer in six Dutch hospitals. Each SLN was examined with routine haematoxylin–eosin staining. In tumour-negative SLNs, we performed CK7/8 or 18 IHC.
Results
The procedure was successful in 67 of 69 patients (97%). The SLN was negative in 43 patients. In three cases, it was false negative, resulting in a negative predictive value of 93% and an accuracy of 96%. In 24 of 27 patients with lymph node metastases in a successful SLN procedure, the SLN was positive (sensitivity 89%). In 15 patients, the SLN was the only positive node (21%). In nine patients, we only found micrometastases or isolated tumour cells, resulting in 18% upstaging. Aberrant lymphatic drainage was seen in three patients (4%).
Conclusion
The SLN procedure in localized colon carcinoma is reliable in a multi-centre setting. It is helpful to identify patients who would be classified as stage II with conventional staging (18%) and who might benefit from adjuvant treatment.
doi:10.1007/s00384-007-0351-6
PMCID: PMC2039795  PMID: 17622543
Colon carcinoma; Sentinel lymph node; Micrometastasis; Minimal residual disease
8.  Resistance to Platinum-Containing Chemotherapy in Testicular Germ Cell Tumors Is Associated with Downregulation of the Protein Kinase SRPK11 
Neoplasia (New York, N.Y.)  2004;6(4):297-301.
Abstract
Male germ cell tumors (GCTs) are extremely sensitive to platinum-containing chemotherapy, with only 10% of patients showing therapy resistance. However, the biological basis of the high curability of disseminated GCTs by chemotherapy is still unknown. Recently, we demonstrated that the mammalian serine/arginine-rich protein-specific kinase 1 (SRPK1) is a cisplatin-sensitive gene, inactivation of which leads to cisplatin resistance. Because, in mammalians, the expression of SRPK1 is preferentially high in testicular tissues, cisplatin responsiveness of male GCTs might be associated with SRPK1 levels. In the present study, we monitored SRPK1 protein expression in a unique series of nonseminomatous GCTs by immunohistochemistry. Randomly selected GCTs (n = 70) and tumors from patients responding to standard chemotherapy (n = 20) generally showed strong SRPK1 staining. In contrast, expression in refractory GCTs (n = 20) as well as in GCTs from poor-prognosis patients responding to high-dose chemotherapy only (n = 11) was significantly lower (two-sided Wilcoxon rank sum test: P < .001). In conclusion, our data suggest that SRPK1 expression might be an important prognostic indicator for the chemoresponsiveness of nonseminomatous GCTs.
PMCID: PMC1502111  PMID: 15256051
Chemotherapy resistance; germ cell tumors; chemotherapy sensitivity; protein kinase SRPK1; immunohistochemistry

Results 1-8 (8)