PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-15 (15)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Global DNA hypomethylation in peripheral blood mononuclear cells as a biomarker of cancer risk 
Background
Global DNA hypomethylation is an early molecular event in carcinogenesis. Whether methylation measured in peripheral blood mononuclear cells(PBMCs) DNA is a clinically reliable biomarker for early detection or cancer risk assessment is to be established.
Methods
From an original sample-set of 753 male and female adults(aged 64.8±7.3years),PBMCs DNA methylation was measured in 68 subjects with history of cancer at time of enrollment and 62 who developed cancer during follow-up. Age-and sex-matched controls for prevalent and incident cancer cases(n=68 and n=58,respectively)were also selected. Global DNA methylation was assessed by LC/MS. Methylenetetrahydrofolate reductase (MTHFR) 677C>T genotype and plasma folate concentrations were also determined for the known gene-nutrient interaction affecting DNA methylation.
Results
Cancer subjects had significantly lower PBMCs-DNA methylation than controls [4.39(95%CIs 4.25–4.53) vs. 5.13(95%CIs 5.03–5.21)%mCyt/(mCyt+Cyt), P<0.0001]. A DNA methylation threshold of 4.74% clearly categorized cancer patients from controls so that those with DNA methylation <4.74% showed an increased prevalence of cancer than those with higher levels (91.5% vs. 19%;P <0.001). Subjects with cancer at follow-up had, already at enrollment, reduced DNA methylation compared to controls [4.34(95%CIs 4.24–4.51) vs. 5.08(95%CIs 5.05–5.22)%mCyt/(mCyt+Cyt),P<0.0001].Moreover, MTHFR677C>T genotype and folate interact for determining DNA methylation, so that MTHFR677TT carriers with low folate had the lowest DNA methylation and concordantly showed a higher prevalence of cancer history (OR=7.04,95%CIs 1.52–32.63, P=0.013).
Conclusions
Genomic PBMCs-DNA methylation may be a useful epigenetic biomarker for early detection and cancer risk estimation.
Impact
This study identifies a threshold for PBMCs-DNA methylation to detect cancer-affected from cancer–free subjects and an at-risk condition for cancer based on genomic DNA methylation and MTHFR677C>T-folate status.
doi:10.1158/1055-9965.EPI-12-0859
PMCID: PMC3596466  PMID: 23300023
DNA methylation; epigenetics; cancer; biomarkers; peripheral blood mononuclear cells; MTHFR; gene-nutrient interactions; folate
2.  Multi-allelic haplotype association identifies novel information different from single-SNP analysis: A new protective haplotype in the LRP8 gene is against familial and early-onset CAD and MI 
Gene  2013;521(1):78-81.
Our previous studies identified a functional SNP, R952Q in the LRP8 gene, that was associated with increased platelet activation and familial and early-onset coronary artery disease (CAD) and myocardial infarction (MI) in American and Italian Caucasian populations. In this study, we analyzed four additional SNPs near R952Q (rs7546246, rs2297660, rs3737983, rs5177) to identify a specific LRP8 SNP haplotype that is associated with familial and early-onset CAD and MI. We employed a case–control association design involving 381 premature CAD and MI probands and 560 controls in GeneQuest, 441 individuals from 22 large pedigrees in GeneQuest II, and 248 MI patients with family history and 308 controls in an Italian cohort. Like R952Q, LRP8 SNPs rs7546246, rs2297660, rs3737983, and rs5177 were significantly associated with early-onset CAD/MI in both population-based and family-based association studies in GeneQuest. The results were replicated in the GeneQuest II family-based population and the Italian population. We then carried out a haplotype analysis for all five SNPs including R952Q. One common haplotype (TCCGC) was significantly associated with CAD (P = 4.0 × 10−11) and MI (P = 6.5 × 10−12) in GeneQuest with odds ratios of 0.53 and 0.42, respectively. The results were replicated in the Italian cohort (P = 0.004, OR = 0.71). The sib-TDT analysis also showed significant association between the TCCGC haplotype and CAD in GeneQuest II (P = 0.001). These results suggest that a common LRP8 haplotype TCCGC confers a significant protective effect on the development of familial, early-onset CAD and/or MI.
doi:10.1016/j.gene.2013.03.022
PMCID: PMC3919654  PMID: 23524007
LRP8; Haplotype; SNPs; Association study
3.  Factor II Activity is Similarly Increased in Patients With Elevated Apolipoprotein CIII and in Carriers of the Factor II 20210A Allele 
Background
Few studies have so far investigated the relationship between apolipoprotein CIII (Apo CIII) and coagulation pathway in subjects with or without coronary artery disease (CAD).
Methods and Results
Serum Apo CIII concentrations and plasma coagulant activities of factor II (FII:c), factor V (FV:c), and factor VIII (FVIII:c), and activated factor VII (FVIIa) were analyzed in a total of 933 subjects, with (n=687) or without (n=246) angiographically demonstrated CAD and not taking anticoagulant drugs. Activated factor X (FXa) generation assay was performed on plasma from subgroups of subjects with low and high levels of Apo CIII. A statistical incremental concentration of FII:c, FV:c, and FVIIa levels was observed through the quartiles of Apo CIII distribution in the population considered as a whole. Significant results were confirmed for FII:c in CAD and CAD‐free subgroup when separately considered. Subjects within the highest Apo CIII quartile (>12.6 mg/dL) had high FII:c levels not statistically different from those of carriers of 20210A allele (n=40; 4.28%). In a multiple linear model, Apo CIII was the best predictor of FII:c variability, after adjustment for age, gender, plasma lipids, CRP, creatinine, diagnosis, and carriership of 20210A allele. FXa generation was increased and its lag time shortened in plasmas with high Apo CIII levels. However, after thrombin inhibition by hirudin, differences between low and high Apo C‐III samples disappeared.
Conclusions
Elevated concentrations of Apo CIII are associated with an increase of thrombin activity to an extent comparable with the carriership of G20210A gene variant and mainly modulating the thrombin generation.
doi:10.1161/JAHA.113.000440
PMCID: PMC3886756  PMID: 24242684
apolipoprotein; coagulation/thrombosis; thrombin
5.  Serum levels of the hepcidin-20 isoform in a large general population: The Val Borbera study☆ 
Journal of Proteomics  2012;76(5):28-35.
Hepcidin, a 25 amino-acid liver hormone, has recently emerged as the key regulator of iron homeostasis. Proteomic studies in limited number of subjects have shown that biological fluids can also contain truncated isoforms, whose role remains to be elucidated. We report, for the first time, data about serum levels of the hepcidin-20 isoform (hep-20) in a general population, taking advantage of the Val Borbera (VB) study where hepcidin-25 (hep-25) was measured by SELDI-TOF-MS. Detectable amount of hep-20 were found in sera from 854 out of 1577 subjects (54.2%), and its levels were about 14% of hep-25 levels. A small fraction of subjects (n = 30, 1.9%) had detectable hep-20 but undetectable hep-25. In multivariate regression models, significant predictors of hep-20 were hep-25 and age in males, and hep-25, age, serum ferritin and body mass index in females. Of note, the hep-25:hep-20 ratio was not constant in the VB population, but increased progressively with increasing ferritin levels. This is not consistent with the simplistic view of hep-20 as a mere catabolic byproduct of hep-25. Although a possible active regulation of hep-20 production needs further confirmation, our results may also have implications for immunoassays for serum hepcidin based on antibodies lacking specificity for hep-25.
This article is part of a Special Issue entitled: Integrated omics.
Graphical abstract
Highlights
► Hepcidin, a 25 amino acid hormone, is the key regulator of iron metabolism. ► We measured, for the first time, serum hepcidin-20 at population level by SELDI-TOF-MS. ► Detectable amount of hepcidin 20 were found in more than half of 1577 individuals. ► The Hep25:hep20 ratio was not constant but increased with increasing iron stores. ► Our results point toward a possible active regulation of hepcidin-20 production.
doi:10.1016/j.jprot.2012.08.006
PMCID: PMC3509339  PMID: 22951294
BMI, body mass index; CRP, C-reactive protein; Hep-20, Hepcidin-20; Hep-24, Hepcidin-24; Hep-25, Hepcidin-25; PTH, parathyroid hormone; VB, Val Borbera; Iron metabolism; Hepcidin; Ferritin; SELDI-TOF-MS
6.  Increased Serum Hepcidin Levels in Subjects with the Metabolic Syndrome: A Population Study 
PLoS ONE  2012;7(10):e48250.
The recent discovery of hepcidin, the key iron regulatory hormone, has changed our view of iron metabolism, which in turn is long known to be linked with insulin resistant states, including type 2 diabetes mellitus and the Metabolic Syndrome (MetS). Serum ferritin levels are often elevated in MetS (Dysmetabolic hyperferritinemia - DHF), and are sometimes associated with a true mild-to-moderate hepatic iron overload (dysmetabolic iron overload syndrome - DIOS). However, the pathophysiological link between iron and MetS remains unclear. This study was aimed to investigate, for the first time, the relationship between MetS and hepcidin at population level. We measured serum hepcidin levels by Mass Spectrometry in 1,391 subjects from the Val Borbera population, and evaluated their relationship with classical MetS features. Hepcidin levels increased significantly and linearly with increasing number of MetS features, paralleling the trend of serum ferritin. In multivariate models adjusted for relevant variables including age, C-Reactive Protein, and the HFE C282Y mutation, ferritin was the only significant independent predictor of hepcidin in males, while in females MetS was also independently associated with hepcidin. Overall, these data indicate that the fundamental iron regulatory feedback is preserved in MetS, i.e. that hepcidin tends to progressively increase in response to the increase of iron stores. Due to recently discovered pleiotropic effects of hepcidin, this may worsen insulin resistance and contribute to the cardiovascular complications of MetS.
doi:10.1371/journal.pone.0048250
PMCID: PMC3483177  PMID: 23144745
7.  Access Rate to the Emergency Department for Venous Thromboembolism in Relationship with Coarse and Fine Particulate Matter Air Pollution 
PLoS ONE  2012;7(4):e34831.
Particulate matter (PM) air pollution has been associated with cardiovascular and respiratory disease. Recent studies have proposed also a link with venous thromboembolism (VTE) risk. This study was aimed to evaluate the possible influence of air pollution-related changes on the daily flux of patients referring to the Emergency Department (ED) for VTE, dissecting the different effects of coarse and fine PM. From July 1st, 2007, to June 30th, 2009, data about ED accesses for VTE and about daily concentrations of PM air pollution in Verona district (Italy) were collected. Coarse PM (PM10-2.5) was calculated by subtracting the finest PM2.5 from the whole PM10. During the index period a total of 302 accesses for VTE were observed (135 males and 167 females; mean age 68.3±16.7 years). In multiple regression models adjusted for other atmospheric parameters PM10-2.5, but not PM2.5, concentrations were positively correlated with VTE (beta-coefficient = 0.237; P = 0.020). During the days with high levels of PM10-2.5 (≥75th percentile) there was an increased risk of ED accesses for VTE (OR 1.69 with 95%CI 1.13–2.53). By analysing days of exposure using distributed lag non-linear models, the increase of VTE risk was limited to PM10-2.5 peaks in the short-term period. Consistently with these results, in another cohort of subjects without active thrombosis (n = 102) an inverse correlation between PM10-2.5 and prothrombin time was found (R = −0.247; P = 0.012). Our results suggest that short-time exposure to high concentrations of PM10-2.5 may favour an increased rate of ED accesses for VTE through the induction of a prothrombotic state.
doi:10.1371/journal.pone.0034831
PMCID: PMC3324538  PMID: 22509360
8.  Low Levels of Serum Paraoxonase Activities are Characteristic of Metabolic Syndrome and May Influence the Metabolic-Syndrome-Related Risk of Coronary Artery Disease 
Experimental Diabetes Research  2011;2012:231502.
Low concentrations of plasma high-density lipoprotein (HDLs) are characteristic in metabolic syndrome (MS). The antioxidant ability of HDLs is, at least in part, attributable to pleiotropic serum paraoxonase (PON1). Different PON1 activities have been assessed in 293 subjects with (n = 88) or without MS (n = 205) and with (n = 195) or without (n = 98) angiographically proven coronary artery disease (CAD). MS subjects had low PON1 activities, with a progressively decreasing trend by increasing the number of MS abnormalities. The activity versus 7-O-diethyl phosphoryl,3-cyano,4-methyl,7-hydroxycoumarin (DEPCyMC), which is considered a surrogate marker of PON1 concentration, showed the most significant association with MS, independently of both HDL and apolipoprotein A-I levels. Subjects with MS and low DEPCyMCase activity had the highest CAD risk (OR 4.34 with 95% CI 1.44–13.10), while no significant increase of risk was found among those with MS but high DEPCyMCase activity (OR 1.45 with 95% CI 0.47–4.46). Our results suggest that low PON1 concentrations are typical in MS and may modulate the MS-related risk of CAD.
doi:10.1155/2012/231502
PMCID: PMC3179885  PMID: 21960992
9.  Hepcidin Levels and Their Determinants in Different Types of Myelodysplastic Syndromes 
PLoS ONE  2011;6(8):e23109.
Iron overload may represent an additional clinical problem in patients with Myelodysplastic Syndromes (MDS), with recent data suggesting prognostic implications. Beyond red blood cells transfusions, dysregulation of hepcidin, the key iron hormone, may play a role, but studies until now have been hampered by technical problems. Using a recently validated assay, we measured serum hepcidin in 113 patients with different MDS subtypes. Mean hepcidin levels were consistently heterogeneous across different MDS subtypes, with the lowest levels in refractory anemia with ringed sideroblasts (RARS, 1.43 nM) and the highest in refractory anemia with excess blasts (RAEB, 11.3 nM) or in chronic myelomonocytic leukemia (CMML, 10.04 nM) (P = 0.003 by ANOVA). MDS subtypes remained significant predictors of hepcidin in multivariate analyses adjusted for ferritin and transfusion history. Consistently with current knowledge on hepcidin action/regulation, RARS patients had the highest levels of toxic non-transferrin-bound-iron, while RAEB and CMML patients had substantial elevation of C-Reactive Protein as compared to other MDS subtypes, and showed lost of homeostatic regulation by iron. Growth differentiation factor 15 did not appear as a primary hepcidin regulator in this series. If confirmed, these results may help to calibrate future treatments with chelating agents and/or hepcidin modulators in MDS patients.
doi:10.1371/journal.pone.0023109
PMCID: PMC3158762  PMID: 21886780
10.  Evaluation of Hepcidin Isoforms in Hemodialysis Patients by a Proteomic Approach Based on SELDI-TOF MS 
The hepatic iron regulator hormone hepcidin consists, in its mature form, of 25 amino acids, but two other isoforms, hepcidin-20 and hepcidin-22, have been reported, whose biological meaning remains poorly understood. We evaluated hepcidin isoforms in sera from 57 control and 54 chronic haemodialysis patients using a quantitative proteomic approach based on SELDI-TOF-MS. Patients had elevated serum levels of both hepcidin-25 and hepcidin-20 as compared to controls (geometric means: 7.52 versus 4.69 nM, and 4.06 versus 1.76 nM, resp., P < .05 for both). The clearance effects of a single dialysis session by different dialysis techniques and membranes were also investigated, showing an average reduction by 51.3% ± 29.2% for hepcidin-25 and 34.2% ± 28.4% for hepcidin-20 but only minor differences among the different dialysis modalities. Measurement of hepcidin isoforms through MS-based techniques can be a useful tool for better understanding of their biological role in hemodialysis patients and other clinical conditions.
doi:10.1155/2010/329646
PMCID: PMC2857619  PMID: 20414466
11.  Additive effect of LRP8/APOER2 R952Q variant to APOE ε2/ε3/ε4 genotype in modulating apolipoprotein E concentration and the risk of myocardial infarction: a case-control study 
BMC Medical Genetics  2009;10:41.
Background
The R952Q variant in the low density lipoprotein receptor-related protein 8 (LRP8)/apolipoprotein E receptor 2 (ApoER2) gene has been recently associated with familial and premature myocardial infarction (MI) by means of genome-wide linkage scan/association studies. We were interested in the possible interaction of the R952Q variant with another established cardiovascular genetic risk factor belonging to the same pathway, namely apolipoprotein E (APOE) ε2/ε3/ε4 genotype, in modulating apolipoprotein E (ApoE) plasma levels and risk of MI.
Methods
In the Italian cohort used to confirm the association of the R952Q variant with MI, we assessed lipid profile, apolipoprotein concentrations, and APOE ε2/ε3/ε4 genotype. Complete data were available for a total of 681 subjects in a case-control setting (287 controls and 394 patients with MI).
Results
Plasma ApoE levels decreased progressively across R952Q genotypes (mean levels ± SD = RR: 0.045 ± 0.020, RQ: 0.044 ± 0.014, QQ: 0.040 ± 0.008 g/l; P for trend = 0.047). Combination with APOE genotypes revealed an additive effect on ApoE levels, with the highest level observed in RR/non-carriers of the E4 allele (0.046 ± 0.021 g/l), and the lowest level in QQ/E4 carriers (0.035 ± 0.009 g/l; P for trend = 0.010). QQ/E4 was also the combined genotype with the most significant association with MI (OR 3.88 with 95%CI 1.08–13.9 as compared with RR/non-carriers E4).
Conclusion
Our data suggest that LRP8 R952Q variant may have an additive effect to APOE ε2/ε3/ε4 genotype in determining ApoE concentrations and risk of MI in an Italian population.
doi:10.1186/1471-2350-10-41
PMCID: PMC2689206  PMID: 19439088
12.  High resolution preparation of monocyte-derived macrophages (MDM) protein fractions for clinical proteomics 
Proteome Science  2009;7:4.
Background
Macrophages are involved in a number of key physiological processes and complex responses such as inflammatory, immunological, infectious diseases and iron homeostasis. These cells are specialised for iron storage and recycling from senescent erythrocytes so they play a central role in the fine tuning of iron balancing and distribution. The comprehension of the many physiological responses of macrophages implies the study of the related molecular events. To this regard, proteomic analysis, is one of the most powerful tools for the elucidation of the molecular mechanisms, in terms of changes in protein expression levels.
Results
Our aim was to optimize a protocol for protein fractionation and high resolution mapping using human macrophages for clinical studies. We exploited a fractionation protocol based on the neutral detergent Triton X-114. The 2D maps of the fractions obtained showed high resolution and a good level of purity. Western immunoblotting and mass spectrometry (MS/MS analysis) indicated no fraction cross contamination. On 2D-PAGE mini gels (7 × 8 cm) we could count more than five hundred protein spots, substantially increasing the resolution and the number of detectable proteins for the macrophage proteome. The fractions were also evaluated, with preliminary experiments, using Surface Enhanced Laser Desorption Ionization Time of Flight Mass Spectrometry (SELDI-TOF-MS).
Conclusion
This relatively simple method allows deep investigation into macrophages proteomics producing discrete and accurate protein fractions, especially membrane-associated and integral proteins. The adapted protocol seems highly suitable for further studies of clinical proteomics, especially for the elucidation of the molecular mechanisms controlling iron homeostasis in normal and disease conditions.
doi:10.1186/1477-5956-7-4
PMCID: PMC2649903  PMID: 19228399
13.  Combined Effect of Hemostatic Gene Polymorphisms and the Risk of Myocardial Infarction in Patients with Advanced Coronary Atherosclerosis 
PLoS ONE  2008;3(2):e1523.
Background
Relative little attention has been devoted until now to the combined effects of gene polymorphisms of the hemostatic pathway as risk factors for Myocardial Infarction (MI), the main thrombotic complication of Coronary Artery Disease (CAD). The aim of this study was to evaluate the combined effect of ten common prothrombotic polymorphisms as a determinant of MI.
Methodology/Principal Findings
We studied a total of 804 subjects, 489 of whom with angiographically proven severe CAD, with or without MI (n = 307; n = 182; respectively). An additive model considering ten common polymorphisms [Prothrombin 20210G>A, PAI-1 4G/5G, Fibrinogen β -455G>A, FV Leiden and “R2”, FVII -402G>A and -323 del/ins, Platelet ADP Receptor P2Y12 -744T>C, Platelet Glycoproteins Ia (873G>A), and IIIa (1565T>C)] was tested. The prevalence of MI increased linearly with an increasing number of unfavorable alleles (χ2 for trend = 10.68; P = 0.001). In a multiple logistic regression model, the number of unfavorable alleles remained significantly associated with MI after adjustment for classical risk factors. As compared to subjects with 3-7 alleles, those with few (≤2) alleles had a decreased MI risk (OR 0.34, 95%CIs 0.13–0.93), while those with more (≥8) alleles had an increased MI risk (OR 2.49, 95%CIs 1.03–6.01). The number of procoagulant alleles correlated directly (r = 0.49, P = 0.006) with endogenous thrombin potential.
Conclusions
The combination of prothrombotic polymorphisms may help to predict MI in patients with advanced CAD.
doi:10.1371/journal.pone.0001523
PMCID: PMC2211406  PMID: 18253477
14.  Gene sequence variations of the platelet P2Y12 receptor are associated with coronary artery disease 
BMC Medical Genetics  2007;8:59.
Background
The platelet P2Y12 receptor plays a key role in platelet activation. The H2 haplotype of the P2Y12 receptor gene (P2RY12) has been found to be associated with maximal aggregation response to adenosine diphosphate (ADP) and with increased risk for peripheral arterial disease. No data are available on its association with coronary artery disease (CAD).
Methods
The H2 haplotype of the P2RY12 was determined in 1378 unrelated patients of both sexes selected according to the presence of significant coronary artery disease (CAD group) or having normal coronary angiogram at cardiac catheterization (CAD-free group). Significant coronary artery disease was angiographically determined, and was defined as a greater than 50% visually estimated luminal diameter stenosis in at least one major epicardial coronary artery.
Results
In the studied population 71.9% had CAD (n = 991) and 28.1% had normal coronary angiogram (n = 387). H2 haplotype carriers were more frequent in the CAD group (p = 0.03, OR = 1.36, 95%CI = 1.02–1.82). The H2 haplotype was significantly associated with CAD in non-smokers (p = 0.007, OR = 1.83 95%CI = 1.17–2.87), but not in smokers. The association remained significant after adjustment for other covariates (age, triglycerides, HDL, hypertension, diabetes) by multivariate logistic regression (p = 0.004, OR = 2.32 95%CI = 1.30–4.15).
Conclusion
Gene sequence variations of the P2Y12 receptor gene are associated with the presence of significant CAD, particularly in non-smoking individuals.
doi:10.1186/1471-2350-8-59
PMCID: PMC2048504  PMID: 17803810
15.  Hyperhomocysteinemia and Mortality after Coronary Artery Bypass Grafting 
PLoS ONE  2006;1(1):e83.
Background
The independent prognostic impact, as well as the possible causal role, of hyperhomocysteinemia (HHcy) in coronary artery disease (CAD) is controversial. No previous study specifically has addressed the relationship between HHcy and mortality after coronary artery bypass grafting (CABG) surgery. The aim of this study is to evaluate the prognostic impact of HHcy after CABG surgery.
Methodology and Principal Findings
We prospectively followed 350 patients who underwent elective CABG between May 1996 and May 1999. At baseline, fasting total homocysteine (tHcy) levels were measured in all participants, and a post-methionine loading (PML) test was performed in 77.7% of them (n = 272). After a median follow-up of 58 months, 33 patients (9.4%) had died, 25 because of cardiovascular events. HHcy, defined by levels higher than the 90th percentile (25.2 µmol/L) of the population's distribution, was significantly associated to total and cardiovascular mortality (P = 0.018 [log-rank test 5.57]; P = 0.002 [log-rank test 9.76], respectively). The PML test had no prognostic value. After multiple adjustment for other univariate predictors by Cox regression, including statin therapy (the most powerful predictor in uni-/multivariate analyses), high-sensitivity C Reactive Protein (hs-CRP) levels, and all known major genetic (MTHFR 677C→T polymorphism) and non-genetic (B-group vitamin status and renal function) tHcy determinants, HHcy remained an independent prognostic factor for mortality (HRs: 5.02, 95% CIs 1.88 to 13.42, P = 0.001).
Conclusions
HHcy is an important prognostic marker after CABG, independent of modern drug therapy and biomarkers.
doi:10.1371/journal.pone.0000083
PMCID: PMC1762373  PMID: 17183715

Results 1-15 (15)