Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Resveratrol as a Natural Anti-Tumor Necrosis Factor-α Molecule: Implications to Dendritic Cells and Their Crosstalk with Mesenchymal Stromal Cells 
PLoS ONE  2014;9(3):e91406.
Dendritic cells (DC) are promising targets for inducing tolerance in inflammatory conditions. Thus, this study aims to investigate the effects of the natural anti-inflammatory molecule resveratrol on human DC at phenotypic and functional levels, including their capacity to recruit mesenchymal stem/stromal cells (MSC). Primary human monocyte-derived DC and bone marrow MSC were used. DC immunophenotyping revealed that small doses of resveratrol (10 µM) reduce cell activation in response to tumor necrosis factor (TNF)-α, significantly decreasing surface expression of CD83 and CD86. Functionally, IL-12/IL-23 secretion induced by TNF-α was significantly reduced by resveratrol, while IL-10 levels increased. Resveratrol also inhibited T cell proliferation, in response to TNF-α-stimulated DC. The underlying mechanism was investigated by Western blot and imaging flow cytometry (ImageStreamX), and likely involves impairment of nuclear translocation of the p65 NF-κB subunit. Importantly, results obtained demonstrate that DC are able to recruit MSC through extracellular matrix components, and that TNF-α impairs DC-mediated recruitment. Matrix metalloproteinases (MMP) produced by both cell populations were visualized by gelatin zymography. Finally, time-lapse microscopy analysis revealed a significant decrease on DC and MSC motility in co-cultures, indicating cell interaction, and TNF-α further decreased MSC motility, while resveratrol recovered it. Thus, the current study points out the potential of resveratrol as a natural anti-TNF-α drug, capable of modulating DC phenotype and function, as well as DC-mediated MSC recruitment.
PMCID: PMC3948844  PMID: 24614867
2.  Matrix Metalloproteinases in a Sea Urchin Ligament with Adaptable Mechanical Properties 
PLoS ONE  2012;7(11):e49016.
Mutable collagenous tissues (MCTs) of echinoderms show reversible changes in tensile properties (mutability) that are initiated and modulated by the nervous system via the activities of cells known as juxtaligamental cells. The molecular mechanism underpinning this mechanical adaptability has still to be elucidated. Adaptable connective tissues are also present in mammals, most notably in the uterine cervix, in which changes in stiffness result partly from changes in the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). There have been no attempts to assess the potential involvement of MMPs in the echinoderm mutability phenomenon, apart from studies dealing with a process whose relationship to the latter is uncertain. In this investigation we used the compass depressor ligaments (CDLs) of the sea-urchin Paracentrotus lividus. The effect of a synthetic MMP inhibitor - galardin - on the biomechanical properties of CDLs in different mechanical states (“standard”, “compliant” and “stiff”) was evaluated by dynamic mechanical analysis, and the presence of MMPs in normal and galardin-treated CDLs was determined semi-quantitatively by gelatin zymography. Galardin reversibly increased the stiffness and storage modulus of CDLs in all three states, although its effect was significantly lower in stiff than in standard or compliant CDLs. Gelatin zymography revealed a progressive increase in total gelatinolytic activity between the compliant, standard and stiff states, which was possibly due primarily to higher molecular weight components resulting from the inhibition and degradation of MMPs. Galardin caused no change in the gelatinolytic activity of stiff CDLs, a pronounced and statistically significant reduction in that of standard CDLs, and a pronounced, but not statistically significant, reduction in that of compliant CDLs. Our results provide evidence that MMPs may contribute to the variable tensility of the CDLs, in the light of which we provide an updated hypothesis for the regulatory mechanism controlling MCT mutability.
PMCID: PMC3500250  PMID: 23173042
3.  Docosahexaenoic Acid Inhibits Helicobacter pylori Growth In Vitro and Mice Gastric Mucosa Colonization 
PLoS ONE  2012;7(4):e35072.
H. pylori drug-resistant strains and non-compliance to therapy are the major causes of H. pylori eradication failure. For some bacterial species it has been demonstrated that fatty acids have a growth inhibitory effect. Our main aim was to assess the ability of docosahexaenoic acid (DHA) to inhibit H. pylori growth both in vitro and in a mouse model. The effectiveness of standard therapy (ST) in combination with DHA on H. pylori eradication and recurrence prevention success was also investigated. The effects of DHA on H. pylori growth were analyzed in an in vitro dose-response study and n in vivo model. We analized the ability of H. pylori to colonize mice gastric mucosa following DHA, ST or a combination of both treatments. Our data demonstrate that DHA decreases H. pylori growth in vitro in a dose-dependent manner. Furthermore, DHA inhibits H. pylori gastric colonization in vivo as well as decreases mouse gastric mucosa inflammation. Addition of DHA to ST was also associated with lower H. pylori infection recurrence in the mouse model. In conclusion, DHA is an inhibitor of H. pylori growth and its ability to colonize mouse stomach. DHA treatment is also associated with a lower recurrence of H. pylori infection in combination with ST. These observations pave the way to consider DHA as an adjunct agent in H. pylori eradication treatment.
PMCID: PMC3328494  PMID: 22529974
4.  Comparison between observed children's tooth brushing habits and those reported by mothers 
BMC Oral Health  2011;11:22.
Information bias can occur in epidemiological studies and compromise scientific outcomes, especially when evaluating information given by a patient regarding their own health. The oral habits of children reported by their mothers are commonly used to evaluate tooth brushing practices and to estimate fluoride intake by children. The aim of the present study was to compare observed tooth-brushing habits of young children using fluoridated toothpaste with those reported by mothers.
A sample of 201 mothers and their children (aged 24-48 months) from Montes Claros, Brazil, took part in a cross-sectional study. At day-care centres, the mothers answered a self-administered questionnaire on their child's tooth-brushing habits. The structured questionnaire had six items with two to three possible answers. An appointment was then made with each mother/child pair at day-care centres. The participants were asked to demonstrate the tooth-brushing practice as usually performed at home. A trained examiner observed and documented the procedure. Observed tooth brushing and that reported by mothers were compared for overall agreement using Cohen's Kappa coefficient and the McNemar test.
Cohen's Kappa values comparing mothers' reports and tooth brushing observed by the examiner ranged from poor-to-good (0.00-0.75). There were statistically significant differences between observed tooth brushing habits and those reported by mothers (p < 0.001). When observed by the examiner, the frequencies of dentifrice dispersed on all bristles (35.9%), children who brushed their teeth alone (33.8%) and those who did not rinse their mouths during brushing (42.0%) were higher than those reported by the mothers (12.1%, 18.9% and 6.5%, respectively; p < 0.001).
In general, there was low agreement between observed tooth brushing and mothers' reports. Moreover, the different methods of estimation resulted in differences in the frequencies of tooth brushing habits, indicative of reporting bias. Data regarding children's tooth-brushing habits as reported by mothers should be considered with caution in epidemiological surveys on fluoridated dentifrice use and the risk of dental fluorosis.
PMCID: PMC3175471  PMID: 21888664
5.  Helicobacter pylori induces β3GnT5 in human gastric cell lines, modulating expression of the SabA ligand sialyl–Lewis x  
The Journal of Clinical Investigation  2008;118(6):2325-2336.
Chronic Helicobacter pylori infection is recognized as a cause of gastric cancer. H. pylori adhesion to gastric cells is mediated by bacterial adhesins such as sialic acid–binding adhesin (SabA), which binds the carbohydrate structure sialyl–Lewis x. Sialyl–Lewis x expression in the gastric epithelium is induced during persistent H. pylori infection, suggesting that H. pylori modulates host cell glycosylation patterns for enhanced adhesion. Here, we evaluate changes in the glycosylation-related gene expression profile of a human gastric carcinoma cell line following H. pylori infection. We observed that H. pylori significantly altered expression of 168 of the 1,031 human genes tested by microarray, and the extent of these alterations was associated with the pathogenicity of the H. pylori strain. A highly pathogenic strain altered expression of several genes involved in glycan biosynthesis, in particular that encoding β3 GlcNAc T5 (β3GnT5), a GlcNAc transferase essential for the biosynthesis of Lewis antigens. β3GnT5 induction was specific to infection with highly pathogenic strains of H. pylori carrying a cluster of genes known as the cag pathogenicity island, and was dependent on CagA and CagE. Further, β3GnT5 overexpression in human gastric carcinoma cell lines led to increased sialyl–Lewis x expression and H. pylori adhesion. This study identifies what we believe to be a novel mechanism by which H. pylori modulates the biosynthesis of the SabA ligand in gastric cells, thereby strengthening the epithelial attachment necessary to achieve successful colonization.
PMCID: PMC2381748  PMID: 18483624

Results 1-5 (5)