Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  The Anti-Inflammatory Effects of Flavanol-Rich Lychee Fruit Extract in Rat Hepatocytes 
PLoS ONE  2014;9(4):e93818.
Flavanol (flavan-3-ol)-rich lychee fruit extract (FRLFE) is a mixture of oligomerized polyphenols primarily derived from lychee fruit and is rich in flavanol monomers, dimers, and trimers. Supplementation with this functional food has been shown to suppress inflammation and tissue damage caused by high-intensity exercise training. However, it is unclear whether FRLFE has in vitro anti-inflammatory effects, such as suppressing the production of the proinflammatory cytokine tumor necrosis factor α (TNF-α) and the proinflammatory mediator nitric oxide (NO), which is synthesized by inducible nitric oxide synthase (iNOS). Here, we analyzed the effects of FRLFE and its constituents on the expression of inflammatory genes in interleukin 1β (IL-1β)-treated rat hepatocytes. FRLFE decreased the mRNA and protein expression of the iNOS gene, leading to the suppression of IL-1β-induced NO production. FRLFE also decreased the levels of the iNOS antisense transcript, which stabilizes iNOS mRNA. By contrast, unprocessed lychee fruit extract, which is rich in flavanol polymers, and flavanol monomers had little effect on NO production. When a construct harboring the iNOS promoter fused to the firefly luciferase gene was used, FRLFE decreased the luciferase activity in the presence of IL-1β, suggesting that FRLFE suppresses the promoter activity of the iNOS gene at the transcriptional level. Electrophoretic mobility shift assays indicated that FRLFE reduced the nuclear transport of a key regulator, nuclear factor κB (NF-κB). Furthermore, FRLFE inhibited the phosphorylation of NF-κB inhibitor α (IκB-α). FRLFE also reduced the mRNA levels of NF-κB target genes encoding cytokines and chemokines, such as TNF-α. Therefore, FRLFE inhibited NF-κB activation and nuclear translocation to suppress the expression of these inflammatory genes. Our results suggest that flavanols may be responsible for the anti-inflammatory and hepatoprotective effects of FRLFE and may be used to treat inflammatory diseases.
PMCID: PMC3976307  PMID: 24705335
2.  Stabilization of human interferon-α1 mRNA by its antisense RNA 
Cellular and Molecular Life Sciences  2012;70(8):1451-1467.
Antisense transcription is a widespread phenomenon in the mammalian genome and is believed to play a role in regulating gene expression. However, the exact functional significance of antisense transcription is largely unknown. Here, we show that natural antisense (AS) RNA is an important modulator of interferon-α1 (IFN-α1) mRNA levels. A ~4-kb, spliced IFN-α1 AS RNA targets a single-stranded region within a conserved secondary structure element of the IFN-α1 mRNA, an element which was previously reported to function as the nuclear export element. Following infection of human Namalwa lymphocytes with Sendai virus or infection of guinea pig 104C1 fetal fibroblasts with influenza virus A/PR/8/34, expression of IFN-α1 AS RNA becomes elevated. This elevated expression results in increased IFN-α1 mRNA stability because of the cytoplasmic (but not nuclear) interaction of the AS RNA with the mRNA at the single-stranded region. This results in increased IFN-α protein production. The silencing of IFN-α1 AS RNA by sense oligonucleotides or over-expression of antisense oligoribonucleotides, which were both designed from the target region, confirmed the critical role of the AS RNA in the post-transcriptional regulation of IFN-α1 mRNA levels. This AS RNA stabilization effect is caused by the prevention of the microRNA (miRNA)-induced destabilization of IFN-α1 mRNA due to masking of the miR-1270 binding site. This discovery not only reveals a regulatory pathway for controlling IFN-α1 gene expression during the host innate immune response against virus infection but also suggests a reason for the large number of overlapping complementary transcripts with previously unknown function.
Electronic supplementary material
The online version of this article (doi:10.1007/s00018-012-1216-x) contains supplementary material, which is available to authorized users.
PMCID: PMC3607724  PMID: 23224365
Interferon-α1 antisense RNA; mRNA stabilization; Interferon-α1 mRNA; microRNA; miR-1270; Regulatory RNA
3.  Peroxidation of n-3 Polyunsaturated Fatty Acids Inhibits the Induction of iNOS Gene Expression in Proinflammatory Cytokine-Stimulated Hepatocytes 
Eicosapentaenoic acid and docosahexaenoic acid (EPA/DHA), n-3 polyunsaturated fatty acids (PUFAs), have a variety of biological activities including anti-inflammatory and anticancer effects. We hypothesized that their peroxidized products contributed in part to anti-inflammatory effects. In the liver, the production of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) has been implicated as one of the factors in hepatic inflammation and injury. We examined whether the peroxidation of EPA/DHA influences the induction of iNOS and NO production in proinflammatory cytokine-stimulated cultured hepatocytes, which is in vitro liver inflammation model. Peroxidized EPA/DHA inhibited the induction of iNOS and NO production in parallel with the increased levels of their peroxidation, whereas unoxidized EPA/DHA had no effects at all. Peroxidized EPA/DHA reduced the activation of transcription factor, NF-κB, and the expression of the iNOS antisense transcript, which are involved in iNOS promoter transactivation (mRNA synthesis) and its mRNA stabilization, respectively. These findings demonstrated that peroxidized products of EPA/DHA suppressed the induction of iNOS gene expression through both of the transcriptional and posttranscriptional steps, leading to the prevention of hepatic inflammation.
PMCID: PMC3136170  PMID: 21773019

Results 1-3 (3)