PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (39)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Molecular Epidemiologic Investigation of an Anthrax Outbreak among Heroin Users, Europe 
Emerging Infectious Diseases  2012;18(8):1307-1313.
Heroin may have been accidentally contaminated by an animal-derived source along a major drug trafficking route.
In December 2009, two unusual cases of anthrax were diagnosed in heroin users in Scotland. A subsequent anthrax outbreak in heroin users emerged throughout Scotland and expanded into England and Germany, sparking concern of nefarious introduction of anthrax spores into the heroin supply. To better understand the outbreak origin, we used established genetic signatures that provided insights about strain origin. Next, we sequenced the whole genome of a representative Bacillus anthracis strain from a heroin user (Ba4599), developed Ba4599-specific single-nucleotide polymorphism assays, and genotyped all available material from other heroin users with anthrax. Of 34 case-patients with B. anthracis–positive PCR results, all shared the Ba4599 single-nucleotide polymorphism genotype. Phylogeographic analysis demonstrated that Ba4599 was closely related to strains from Turkey and not to previously identified isolates from Scotland or Afghanistan, the presumed origin of the heroin. Our results suggest accidental contamination along the drug trafficking route through a cutting agent or animal hides used to smuggle heroin into Europe.
doi:10.3201/eid1808.111343
PMCID: PMC3414016  PMID: 22840345
Anthrax; heroin; canSNP; epidemic; outbreak; Scotland; Bacillus anthracis; epidemiology; Trans-Eurasian; phylogenetic; bacteria
2.  Multicenter, phase II clinical trial of cancer vaccination for advanced esophageal cancer with three peptides derived from novel cancer-testis antigens 
Background
Since a phase I clinical trial using three HLA-A24-binding peptides from TTK protein kinase (TTK), lymphocyte antigen-6 complex locus K (LY6K), and insulin-like growth factor-II mRNA binding protein-3 (IMP3) had been shown to be promising for esophageal squamous cell carcinoma (ESCC), we further performed a multicenter, non-randomized phase II clinical trial.
Patients and methods
Sixty ESCC patients were enrolled to evaluate OS, PFS, immunological response employing ELISPOT and pentamer assays. Each of the three peptides was administered with IFA weekly. All patients received the vaccination without knowing an HLA-A type, and the HLA types were key-opened at the analysis point. Hence, the endpoints were set to evaluate differences between HLA-A*2402-positive (24(+)) and -negative (24(−)) groups.
Results
The OS in the 24 (+) group (n = 35) tended to be better than that in the 24(−) group (n = 25) (MST 4.6 vs. 2.6 month, respectively, p = 0.121), although the difference was not statistically significant. However, the PFS in the 24(+) group was significantly better than that in the 24(−) group (p = 0.032). In the 24(+) group, ELISPOT assay indicated that the LY6K-, TTK-, and IMP3-specific CTL responses were observed after the vaccination in 63%, 45%, and 60% of the 24(+) group, respectively. The patients having LY6K-, TTK-, and IMP3-specific CTL responses revealed the better OS than those not having CTL induction, respectively. The patients showing the CTL induction for multiple peptides have better clinical responses.
Conclusions
The immune response induced by the vaccination could make the prognosis better for advanced ESCC patients.
Trial registration
ClinicalTrials.gov, number NCT00995358
doi:10.1186/1479-5876-10-141
PMCID: PMC3403921  PMID: 22776426
Cancer vaccine; Esophageal cancer; Phase II clinical trial; CTL; Peptide vaccine
3.  THE EFFECTS OF PROMPTING AND REINFORCEMENT ON SAFE BEHAVIOR OF BICYCLE AND MOTORCYCLE RIDERS 
A reversal design was used to evaluate the effects of vocal and written prompts as well as reinforcement on safe behavior (dismounting and walking bicycles or motorcycles on a sidewalk) on a university campus. Results indicated that an intervention that consisted of vocal and written prompts and reinforcement delivered by security guards was effective at increasing safe behavior exhibited by bicycle and motorcycle riders. No differences were observed between vehicle type or gender with regard to engagement in safe behavior.
doi:10.1901/jaba.2011.44-671
PMCID: PMC3177354  PMID: 21941403
community behavior analysis; pedestrian safety; prevention; prompting; traffic safety
4.  An attenuated strain of Bacillus anthracis (CDC 684) has a large chromosomal inversion and altered growth kinetics 
BMC Genomics  2011;12:477.
Background
An isolate originally labeled Bacillus megaterium CDC 684 was found to contain both pXO1 and pXO2, was non-hemolytic, sensitive to gamma-phage, and produced both the protective antigen and the poly-D-glutamic acid capsule. These phenotypes prompted Ezzell et al., (J. Clin. Microbiol. 28:223) to reclassify this isolate to Bacillus anthracis in 1990.
Results
We demonstrate that despite these B. anthracis features, the isolate is severely attenuated in a guinea pig model. This prompted whole genome sequencing and closure. The comparative analysis of CDC 684 to other sequenced B. anthracis isolates and further analysis reveals: a) CDC 684 is a close relative of a virulent strain, Vollum A0488; b) CDC 684 defines a new B. anthracis lineage (at least 51 SNPs) that includes 15 other isolates; c) the genome of CDC 684 contains a large chromosomal inversion that spans 3.3 Mbp; d) this inversion has caused a displacement of the usual spatial orientation of the origin of replication (ori) to the termination of replication (ter) from 180° in wild-type B. anthracis to 120° in CDC 684 and e) this isolate also has altered growth kinetics in liquid media.
Conclusions
We propose two alternative hypotheses explaining the attenuated phenotype of this isolate. Hypothesis 1 suggests that the skewed ori/ter relationship in CDC 684 has altered its DNA replication and/or transcriptome processes resulting in altered growth kinetics and virulence capacity. Hypothesis 2 suggests that one or more of the single nucleotide polymorphisms in CDC 684 has altered the expression of a regulatory element or other genes necessary for virulence.
doi:10.1186/1471-2164-12-477
PMCID: PMC3210476  PMID: 21962024
5.  The genome and variation of Bacillus anthracis 
Molecular aspects of medicine  2009;30(6):397-405.
The Bacillus anthracis genome reflects its close genetic ties to B. cereus and B. thuringiensis but has been shaped by its own unique biology and evolutionary forces. The genome is comprised of a chromosome and two large virulence plasmids, pXO1 and pXO2. The chromosome is mostly co-linear among B. anthracis strains and even with the closest near neighbor strains. An exception to this pattern has been observed in a large inversion in an attenuated strain suggesting that chromosome co-linearity is important to the natural biology of this pathogen. In general, there are few polymorphic nucleotides among B. anthracis strains reflecting the short evolutionary time since its derivation from a B. cereus-like ancestor. The exceptions to this lack of diversity are the variable number tandem repeat (VNTR) loci that exist in genic and non genic regions of the chromosome and both plasmids. Their variation is associated with high mutability that is driven by rapid insertion and deletion of the repeats within an array. A notable example is found in the vrrC locus which is homologous to known DNA translocase genes from other bacteria.
doi:10.1016/j.mam.2009.08.005
PMCID: PMC3034159  PMID: 19729033
Variable Number Tandem Repeats; chromosomal inversion; phylogeny
6.  Susceptibilities of medaka (Oryzias latipes) cell lines to a betanodavirus 
Virology Journal  2010;7:150.
Background
Betanodaviruses, members of the family Nodaviridae, have bipartite, positive-sense RNA genomes and are the causal agents of viral nervous necrosis in many marine fish species. Recently, the viruses were shown to infect a few freshwater fish species including a model fish medaka (Oryzias latipes). Although virological study using cultured medaka cells would provide a lot of insight into virus-fish interactions in molecular aspects, no such cells have yet been tested for virus susceptibility.
Results
We tested ten medaka cell lines for susceptibilities to redspotted grouper nervous necrosis virus (RGNNV). Although the viral coat protein was detected in all the cell lines inoculated, the levels of cytopathic effect development and viral propagation were quite different among the cell lines. Those levels were especially high in OLHNI-1 and OLHNI-2 cells, but were extremely low in OLME-104 cells. Some cell lines entered into antiviral state after RGNNV infections probably because of inducing an antiviral system. This is the first report to examine the susceptibilities of cultured medaka cells against a virus.
Conclusion
OLHNI-1 and OLHNI-2 cells are candidates of new standard cells for betanodavirus study because of their high susceptibilities to the virus and their several advantages as model fish cells.
doi:10.1186/1743-422X-7-150
PMCID: PMC2908575  PMID: 20624282
7.  Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer 
BMC Biology  2009;7:78.
Background
Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction.
Results
Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia.
Conclusion
We describe an Australian origin for B. pseudomallei, characterized by a single introduction event into Southeast Asia during a recent glacial period, and variable levels of lateral gene transfer within populations. These patterns provide insights into mechanisms of genetic diversification in B. pseudomallei and its closest relatives, and provide a framework for integrating the traditionally separate fields of population genetics and phylogenetics for other bacterial species with high levels of lateral gene transfer.
doi:10.1186/1741-7007-7-78
PMCID: PMC2784454  PMID: 19922616
8.  Hansen’s Disease with HIV: A Case of Immune Reconstitution Disease 
Hawaii medical journal  2009;68(2):27-29.
Immune reconstitution inflammatory syndrome (IRIS) is an acute symptomatic expression of a latent infection during the recovery of the immune system usually as a response to antiretroviral therapy (ART). Opportunistic infections can trigger IRIS. Hansen’s disease is an infection caused by Mycobacterium leprae (M. leprae). There have been a limited number of case reports reporting the presentation of the co-infection of HIV and M. leprae. We report an unique case of IRIS in a patient co-infected with HIV and M. leprae presenting as an exacerbation of his Hansen’s Disease where the patient’s skin lesions progressed from borderline tuberculoid to lepromatous leprosy following ART administration.
PMCID: PMC2714697  PMID: 19385373
9.  Correction: Pre-Columbian Origins for North American Anthrax 
PLoS ONE  2009;4(5):10.1371/annotation/9e8af820-8037-4f98-86b3-6581e16c2ae6.
doi:10.1371/annotation/9e8af820-8037-4f98-86b3-6581e16c2ae6
PMCID: PMC2685750
10.  Bacillus anthracis in China and its relationship to worldwide lineages 
BMC Microbiology  2009;9:71.
Background
The global pattern of distribution of 1033 B. anthracis isolates has previously been defined by a set of 12 conserved canonical single nucleotide polymorphisms (canSNP). These studies reinforced the presence of three major lineages and 12 sub-lineages and sub-groups of this anthrax-causing pathogen. Isolates that form the A lineage (unlike the B and C lineages) have become widely dispersed throughout the world and form the basis for the geographical disposition of "modern" anthrax. An archival collection of 191 different B. anthracis isolates from China provides a glimpse into the possible role of Chinese trade and commerce in the spread of certain sub-lineages of this pathogen. Canonical single nucleotide polymorphism (canSNP) and multiple locus VNTR analysis (MLVA) typing has been used to examine this archival collection of isolates.
Results
The canSNP study indicates that there are 5 different sub-lineages/sub-groups in China out of 12 previously described world-wide canSNP genotypes. Three of these canSNP genotypes were only found in the western-most province of China, Xinjiang. These genotypes were A.Br.008/009, a sub-group that is spread across most of Europe and Asia; A.Br.Aust 94, a sub-lineage that is present in Europe and India, and A.Br.Vollum, a lineage that is also present in Europe. The remaining two canSNP genotypes are spread across the whole of China and belong to sub-group A.Br.001/002 and the A.Br.Ames sub-lineage, two closely related genotypes. MLVA typing adds resolution to the isolates in each canSNP genotype and diversity indices for the A.Br.008/009 and A.Br.001/002 sub-groups suggest that these represent older and established clades in China.
Conclusion
B. anthracis isolates were recovered from three canSNP sub-groups (A.Br.008/009, A.Br.Aust94, and A.Br.Vollum) in the western most portion of the large Chinese province of Xinjiang. The city of Kashi in this province appears to have served as a crossroads for not only trade but the movement of diseases such as anthrax along the ancient "silk road". Phylogenetic inference also suggests that the A.Br.Ames sub-lineage, first identified in the original Ames strain isolated from Jim Hogg County, TX, is descended from the A.Br.001/002 sub-group that has a major presence in most of China. These results suggest a genetic discontinuity between the younger Ames sub-lineage in Texas and the large Western North American sub-lineage spread across central Canada and the Dakotas.
doi:10.1186/1471-2180-9-71
PMCID: PMC2674057  PMID: 19368722
11.  Pre-Columbian Origins for North American Anthrax 
PLoS ONE  2009;4(3):e4813.
Disease introduction into the New World during colonial expansion is well documented and had a major impact on indigenous populations; however, few diseases have been associated with early human migrations into North America. During the late Pleistocene epoch, Asia and North America were joined by the Beringian Steppe ecosystem which allowed animals and humans to freely cross what would become a water barrier in the Holocene. Anthrax has clearly been shown to be dispersed by human commerce and trade in animal products contaminated with Bacillus anthracis spores. Humans appear to have brought B. anthracis to this area from Asia and then moved it further south as an ice-free corridor opened in central Canada ∼13,000 ybp. In this study, we have defined the evolutionary history of Western North American (WNA) anthrax using 2,850 single nucleotide polymorphisms (SNPs) and 285 geographically diverse B. anthracis isolates. Phylogeography of the major WNA B. anthracis clone reveals ancestral populations in northern Canada with progressively derived populations to the south; the most recent ancestor of this clonal lineage is in Eurasia. Our phylogeographic patterns are consistent with B. anthracis arriving with humans via the Bering Land Bridge. This northern-origin hypothesis is highly consistent with our phylogeographic patterns and rates of SNP accumulation observed in current day B. anthracis isolates. Continent-wide dispersal of WNA B. anthracis likely required movement by later European colonizers, but the continent's first inhabitants may have seeded the initial North American populations.
doi:10.1371/journal.pone.0004813
PMCID: PMC2653229  PMID: 19283072
13.  Texas Isolates Closely Related to Bacillus anthracis Ames 
Emerging Infectious Diseases  2008;8(9):1111-6.
doi:10.3201/eid1409.080076
PMCID: PMC2603087  PMID: 18760033
Bacillus anthracis; SNP; MLVA; VNTR; Ames strain; letter
14.  Differentiation of Clostridium botulinum Serotype A Strains by Multiple-Locus Variable-Number Tandem-Repeat Analysis▿ †  
Ten variable-number tandem-repeat (VNTR) regions identified within the complete genomic sequence of Clostridium botulinum strain ATCC 3502 were used to characterize 59 C. botulinum strains of the botulism neurotoxin A1 (BoNT/A1) to BoNT/A4 (BoNT/A1-A4) subtypes to determine their ability to discriminate among the serotype A strains. Two strains representing each of the C. botulinum serotypes B to G, including five bivalent strains, and two strains of the closely related species Clostridium sporogenes were also tested. Amplified fragment length polymorphism analyses revealed the genetic diversity among the serotypes and the high degree of similarity among many of the BoNT/A1 strains. The 10 VNTR markers amplified fragments within all of the serotype A strains but were less successful with strains of other serotypes. The composite multiple-locus VNTR analysis of the 59 BoNT/A1-A4 strains and 3 bivalent B strains identified 38 different genotypes. Thirty genotypes were identified among the 53 BoNT/A1 and BoNT/A1(B) strains, demonstrating discrimination below the subtype level. Contaminating DNA within crude toxin preparations of three BoNT/A subtypes (BoNT/A1 to BoNT/A3) also supported amplification of all of the VNTR regions. These markers provide clinical and forensics laboratories with a rapid, highly discriminatory tool to distinguish among C. botulinum BoNT/A1 strains for investigations of botulism outbreaks.
doi:10.1128/AEM.01539-07
PMCID: PMC2227714  PMID: 18083878
15.  Real-Time PCR Assays of Single-Nucleotide Polymorphisms Defining the Major Brucella Clades▿  
Journal of Clinical Microbiology  2007;46(1):296-301.
Members of the genus Brucella are known worldwide as pathogens of wildlife and livestock and are the most common organisms of zoonotic infection in humans. In general, brucellae exhibit a range of host specificity in animals that has led to the identification of at least seven Brucella species. The genomes of the various Brucella species are highly conserved, which makes the differentiation of species highly challenging. However, we found single-nucleotide polymorphisms (SNPs) in housekeeping and other genes that differentiated the seven main Brucella species or clades and thus enabled us to develop real-time PCR assays based around these SNPs. Screening of a diverse panel of 338 diverse isolates with these assays correctly identified each isolate with its previously determined Brucella clade. Six of the seven clade-specific assays detected DNA concentrations of less than 10 fg, indicating a high level of sensitivity. This SNP-based approach places samples into a phylogenetic framework, allowing reliable comparisons to be made among the lineages of clonal bacteria and providing a solid basis for genotyping. These PCR assays provide a rapid and highly sensitive method of differentiating the major Brucella groups that will be valuable for clinical and forensic applications.
doi:10.1128/JCM.01496-07
PMCID: PMC2224295  PMID: 18032628
16.  Single Nucleotide Polymorphism Typing of Bacillus anthracis from Sverdlovsk Tissue 
Emerging Infectious Diseases  2008;14(4):653-656.
A small number of conserved canonical single nucleotide polymorphisms (canSNP) that define major phylogenetic branches for Bacillus anthracis were used to place a Sverdlovsk patient’s B. anthracis genotype into 1 of 12 subgroups. Reconstruction of the pagA gene also showed a unique SNP that defines a new lineage for B. anthracis.
doi:10.3201/eid1404.070984
PMCID: PMC2570946  PMID: 18394287
Sverdlovsk; anthrax; Bacillus anthracis; canSNP; pagA; dispatch
17.  The Complete Genome Sequence of Bacillus thuringiensis Al Hakam▿  
Journal of Bacteriology  2007;189(9):3680-3681.
Bacillus thuringiensis is an insect pathogen that is widely used as a biopesticide (E. Schnepf, N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler, and D. H. Dean, Microbiol. Mol. Biol. Rev. 62:775-806, 1998). Here we report the finished, annotated genome sequence of B. thuringiensis Al Hakam, which was collected in Iraq by the United Nations Special Commission (L. Radnedge, P. Agron, K. Hill, P. Jackson, L. Ticknor, P. Keim, and G. Andersen, Appl. Environ. Microbiol. 69:2755-2764, 2003).
doi:10.1128/JB.00241-07
PMCID: PMC1855882  PMID: 17337577
18.  Genetic Diversity among Botulinum Neurotoxin-Producing Clostridial Strains▿  
Journal of Bacteriology  2006;189(3):818-832.
Clostridium botulinum is a taxonomic designation for many diverse anaerobic spore-forming rod-shaped bacteria that have the common property of producing botulinum neurotoxins (BoNTs). The BoNTs are exoneurotoxins that can cause severe paralysis and death in humans and other animal species. A collection of 174 C. botulinum strains was examined by amplified fragment length polymorphism (AFLP) analysis and by sequencing of the 16S rRNA gene and BoNT genes to examine the genetic diversity within this species. This collection contained representatives of each of the seven different serotypes of botulinum neurotoxins (BoNT/A to BoNT/G). Analysis of the16S rRNA gene sequences confirmed previous identifications of at least four distinct genomic backgrounds (groups I to IV), each of which has independently acquired one or more BoNT genes through horizontal gene transfer. AFLP analysis provided higher resolution and could be used to further subdivide the four groups into subgroups. Sequencing of the BoNT genes from multiple strains of serotypes A, B, and E confirmed significant sequence variation within each serotype. Four distinct lineages within each of the BoNT A and B serotypes and five distinct lineages of serotype E strains were identified. The nucleotide sequences of the seven toxin genes of the serotypes were compared and showed various degrees of interrelatedness and recombination, as was previously noted for the nontoxic nonhemagglutinin gene, which is linked to the BoNT gene. These analyses contribute to the understanding of the evolution and phylogeny within this species and assist in the development of improved diagnostics and therapeutics for the treatment of botulism.
doi:10.1128/JB.01180-06
PMCID: PMC1797315  PMID: 17114256
19.  Global Genetic Population Structure of Bacillus anthracis 
PLoS ONE  2007;2(5):e461.
Anthrax, caused by the bacterium Bacillus anthracis, is a disease of historical and current importance that is found throughout the world. The basis of its historical transmission is anecdotal and its true global population structure has remained largely cryptic. Seven diverse B. anthracis strains were whole-genome sequenced to identify rare single nucleotide polymorphisms (SNPs), followed by phylogenetic reconstruction of these characters onto an evolutionary model. This analysis identified SNPs that define the major clonal lineages within the species. These SNPs, in concert with 15 variable number tandem repeat (VNTR) markers, were used to subtype a collection of 1,033 B. anthracis isolates from 42 countries to create an extensive genotype data set. These analyses subdivided the isolates into three previously recognized major lineages (A, B, and C), with further subdivision into 12 clonal sub-lineages or sub-groups and, finally, 221 unique MLVA15 genotypes. This rare genomic variation was used to document the evolutionary progression of B. anthracis and to establish global patterns of diversity. Isolates in the A lineage are widely dispersed globally, whereas the B and C lineages occur on more restricted spatial scales. Molecular clock models based upon genome-wide synonymous substitutions indicate there was a massive radiation of the A lineage that occurred in the mid-Holocene (3,064–6,127 ybp). On more recent temporal scales, the global population structure of B. anthracis reflects colonial-era importation of specific genotypes from the Old World into the New World, as well as the repeated industrial importation of diverse genotypes into developed countries via spore-contaminated animal products. These findings indicate humans have played an important role in the evolution of anthrax by increasing the proliferation and dispersal of this now global disease. Finally, the value of global genotypic analysis for investigating bioterrorist-mediated outbreaks of anthrax is demonstrated.
doi:10.1371/journal.pone.0000461
PMCID: PMC1866244  PMID: 17520020
21.  Characterization of Bacillus cereus Isolates Associated with Fatal Pneumonias: Strains Are Closely Related to Bacillus anthracis and Harbor B. anthracis Virulence Genes†  
Journal of Clinical Microbiology  2006;44(9):3352-3360.
Bacillus cereus is ubiquitous in nature, and while most isolates appear to be harmless, some are associated with food-borne illnesses, periodontal diseases, and other more serious infections. In one such infection, B. cereus G9241 was identified as the causative agent of a severe pneumonia in a Louisiana welder in 1994. This isolate was found to harbor most of the B. anthracis virulence plasmid pXO1 (13). Here we report the characterization of two clinical and one environmental B. cereus isolate collected during an investigation of two fatal pneumonia cases in Texas metal workers. Molecular subtyping revealed that the two cases were not caused by the same strain. However, one of the three isolates was indistinguishable from B. cereus G9241. PCR analysis demonstrated that both clinical isolates contained B. anthracis pXO1 toxin genes. One clinical isolate and the environmental isolate collected from that victim's worksite contained the cap A, B, and C genes required for capsule biosynthesis in B. anthracis. Both clinical isolates expressed a capsule; however, neither was composed of poly-d-glutamic acid. Although most B. cereus isolates are not opportunistic pathogens and only a limited number cause food-borne illnesses, these results demonstrate that some B. cereus strains can cause severe and even fatal infections in patients who appear to be otherwise healthy.
doi:10.1128/JCM.00561-06
PMCID: PMC1594744  PMID: 16954272
22.  Anthrax, but Not Bacillus anthracis? 
PLoS Pathogens  2006;2(11):e122.
doi:10.1371/journal.ppat.0020122
PMCID: PMC1657067  PMID: 17121463
23.  Pathogenomic Sequence Analysis of Bacillus cereus and Bacillus thuringiensis Isolates Closely Related to Bacillus anthracis† 
Journal of Bacteriology  2006;188(9):3382-3390.
Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are closely related gram-positive, spore-forming bacteria of the B. cereus sensu lato group. While independently derived strains of B. anthracis reveal conspicuous sequence homogeneity, environmental isolates of B. cereus and B. thuringiensis exhibit extensive genetic diversity. Here we report the sequencing and comparative analysis of the genomes of two members of the B. cereus group, B. thuringiensis 97-27 subsp. konkukian serotype H34, isolated from a necrotic human wound, and B. cereus E33L, which was isolated from a swab of a zebra carcass in Namibia. These two strains, when analyzed by amplified fragment length polymorphism within a collection of over 300 of B. cereus, B. thuringiensis, and B. anthracis isolates, appear closely related to B. anthracis. The B. cereus E33L isolate appears to be the nearest relative to B. anthracis identified thus far. Whole-genome sequencing of B. thuringiensis 97-27and B. cereus E33L was undertaken to identify shared and unique genes among these isolates in comparison to the genomes of pathogenic strains B. anthracis Ames and B. cereus G9241 and nonpathogenic strains B. cereus ATCC 10987 and B. cereus ATCC 14579. Comparison of these genomes revealed differences in terms of virulence, metabolic competence, structural components, and regulatory mechanisms.
doi:10.1128/JB.188.9.3382-3390.2006
PMCID: PMC1447445  PMID: 16621833
24.  Use of a Real-Time PCR TaqMan Assay for Rapid Identification and Differentiation of Burkholderia pseudomallei and Burkholderia mallei 
Journal of Clinical Microbiology  2005;43(11):5771-5774.
A TaqMan allelic-discrimination assay designed around a synonymous single-nucleotide polymorphism was used to genotype Burkholderia pseudomallei and Burkholderia mallei isolates. The assay rapidly identifies and discriminates between these two highly pathogenic bacteria and does not cross-react with genetic near neighbors, such as Burkholderia thailandensis and Burkholderia cepacia.
doi:10.1128/JCM.43.11.5771-5774.2005
PMCID: PMC1287822  PMID: 16272516
25.  Detection of Diverse New Francisella-Like Bacteria in Environmental Samples†  
Following detection of putative Francisella species in aerosol samples from Houston, Texas, we surveyed soil and water samples from the area for the agent of tularemia, Francisella tularensis, and related species. The initial survey used 16S rRNA gene primers to detect Francisella species and related organisms by PCR amplification of DNA extracts from environmental samples. This analysis indicated that sequences related to Francisella were present in one water and seven soil samples. This is the first report of the detection of Francisella-related species in soil samples by DNA-based methods. Cloning and sequencing of PCR products indicated the presence of a wide variety of Francisella-related species. Sequences from two soil samples were 99.9% similar to previously reported sequences from F. tularensis isolates and may represent new subspecies. Additional analyses with primer sets developed for detection and differentiation of F. tularensis subspecies support the finding of very close relatives to known F. tularensis strains in some samples. While the pathogenicity of these organisms is unknown, they have the potential to be detected in F. tularensis-specific assays. Similarly, a potential new subspecies of Francisella philomiragia was identified. The majority of sequences obtained, while more similar to those of Francisella than to any other genus, were phylogenetically distinct from known species and formed several new clades potentially representing new species or genera. The results of this study revise our understanding of the diversity and distribution of Francisella and have implications for tularemia epidemiology and our ability to detect bioterrorist activities.
doi:10.1128/AEM.71.9.5494-5500.2005
PMCID: PMC1214603  PMID: 16151142

Results 1-25 (39)