PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  A Prospective Clinical Trial of Bladder Filling and 3D-Dosimetry in High-Dose-Rate Vaginal-Cuff Brachytherapy 
Purpose
To investigate the impact of bladder filling state on dosimetry and determine the best bladder dosimetric parameter in vaginal-cuff brachytherapy.
Materials and Methods
Twenty women received vaginal cylinder high-dose-rate (HDR) brachytherapy with each fraction followed by a planning CT scan on a prospective clinical trial. The bladder was full for fraction 2 and empty for fraction 3. Dose volume histogram (DVH) and dose surface histogram (DSH) values were generated for the bladder, rectum, and urethra. The midline maximum bladder point (MBP) and the midline maximum rectal point (MRP) were recorded. Paired t-tests, Pearson correlations, and regression analyses were performed.
Results
The volume and surface area of bladder irradiated were significantly smaller when the bladder was empty than when full. Of several DVH and DSH parameters evaluated, the bladder D2cc, V50, V70 and SA50 significantly predicted the difference in empty versus full filling states. The V70 and D2cc were significantly correlated with the MBP. Bladder filling did not alter the volume or surface area of rectum irradiated. However, an empty bladder did result in the nearest point of bowel being significantly closer to the vaginal cylinder than when the bladder was full.
Conclusions
In order to minimize radiation dose to the bladder, patients receiving vaginal-cuff HDR brachytherapy should be treated with an empty bladder if feasible. The MBP correlates well with the volumetric assessments of bladder dose and provides a non-invasive method for reporting maximum bladder point dose using 3D imaging. The MBP can therefore be used as a surrogate for complex dosimetry in the clinic.
doi:10.1016/j.ijrobp.2008.01.041
PMCID: PMC2877499  PMID: 18395360
Vaginal cuff brachytherapy; CT bladder dosimetry
2.  Sigmoid Dose Using 3D Imaging in Cervical-Cancer Brachytherapy 
Background and Purpose
To evaluate the proximity, variance, predictors of dose, and complications to the sigmoid in cervical-cancer brachytherapy using 3D planning.
Materials and Methods
Over 36 months, 50 patients were treated for cervical cancer with either low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy. The distance from the central tandem to the sigmoid, the D0.1cc and the D2cc to the sigmoid, rectum and bladder doses, and toxicity were analyzed.
Results
The median sigmoid EQD2 D0.1cc and D2cc were 84 Gy and 68.3 Gy for HDR versus 71.1 Gy and 65.9 Gy for LDR (p=0.02 and 0.98, respectively). Twenty percent of the HDR fractions required manipulation of the superior dwell positions to decrease the sigmoid dose. The median distance from the sigmoid to the tandem was 1.7 cm (range [rg], 0.1 – 6.16 cm) for HDR and 2.7 cm (rg, 1.17 – 4.52 cm) for LDR; from the sigmoid to the 100% isodose region the median distances were – 0.1 cm (rg, -1.4 – 2.5 cm) and 0.44 cm (rg. -0.73 – 5.2 cm), respectively. The proximity of the sigmoid to the tandem is significantly related to sigmoid dose (p<0.0001). Within-patient (among-fraction) variation in sigmoid-to-tandem distance during HDR was substantial (coefficient of variation = 40%). No grade 3-4 sigmoid toxicity was seen after a median 31-month follow-up period.
Conclusions
3D imaging in cervical cancer brachytherapy shows the sigmoid in close proximity to the tandem. The sigmoid to tandem distance varies substantially between fractions, indicating the importance of sigmoid dose-volume evaluation with each fraction.
doi:10.1016/j.radonc.2009.06.032
PMCID: PMC2867463  PMID: 19665244
cervical cancer; brachytherapy; normal tissue dose
3.  Dose volume histogram analysis of normal structures associated with accelerated partial breast irradiation delivered by high dose rate brachytherapy and comparison with whole breast external beam radiotherapy fields 
Purpose
To assess the radiation dose delivered to the heart and ipsilateral lung during accelerated partial breast brachytherapy using a MammoSite™ applicator and compare to those produced by whole breast external beam radiotherapy (WBRT).
Materials and methods
Dosimetric analysis was conducted on patients receiving MammoSite breast brachytherapy following conservative surgery for invasive ductal carcinoma. Cardiac dose was evaluated for patients with left breast tumors with a CT scan encompassing the entire heart. Lung dose was evaluated for patients in whom the entire lung was scanned. The prescription dose of 3400 cGy was 1 cm from the balloon surface. MammoSite dosimetry was compared to simulated WBRT fields with and without radiobiological correction for the effects of dose and fractionation. Dose parameters such as the volume of the structure receiving 10 Gy or more (V10) and the dose received by 20 cc of the structure (D20), were calculated as well as the maximum and mean doses received.
Results
Fifteen patients were studied, five had complete lung data and six had left-sided tumors with complete cardiac data. Ipsilateral lung volumes ranged from 925–1380 cc. Cardiac volumes ranged from 337–551 cc. MammoSite resulted in a significantly lower percentage lung V30 and lung and cardiac V20 than the WBRT fields, with and without radiobiological correction.
Conclusion
This study gives low values for incidental radiation received by the heart and ipsilateral lung using the MammoSite applicator. The volume of heart and lung irradiated to clinically significant levels was significantly lower with the MammoSite applicator than using simulated WBRT fields of the same CT data sets.
Trial registration
Dana Farber Trial Registry number 03-179
doi:10.1186/1748-717X-3-39
PMCID: PMC2612673  PMID: 19019216

Results 1-3 (3)