PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Advances in Lymphatic Imaging and Drug Delivery 
Advanced drug delivery reviews  2011;63(10-11):876-885.
Cancer remains the second leading cause of death after heart disease in the US. While metastasized cancers such as breast, prostate, and colon are incurable, before their distant spread, these diseases will have invaded the lymphatic system as a first step in their progression. Hence, proper evaluation of the disease state of the lymphatics which drain a tumor site is crucial to staging and the formation of a treatment plan. Current lymphatic imaging modalities with visible dyes and radionucleotide tracers offer limited sensitivity and poor resolution; however, newer tools using nanocarriers, quantum dots, and magnetic resonance imaging promise to vastly improve the staging of lymphatic spread without needless biopsies. Concurrent with the improvement of lymphatic imaging agents, has been the development of drug carriers that can localize chemotherapy to the lymphatic system, thus improving the treatment of localized disease while minimizing the exposure of healthy organs to cytotoxic drugs. This review will focus on the use of various nanoparticulate and polymeric systems that have been developed for imaging and drug delivery to the lymph system, how these new devices improve upon current technologies, and where further improvement is needed.
doi:10.1016/j.addr.2011.05.020
PMCID: PMC3164439  PMID: 21718728
drug delivery; polymeric carriers; lymphatic system; sentinel lymph nodes; quantum dots; dendrimers
2.  Nanoparticles for biomedical imaging 
Expert opinion on drug delivery  2009;6(11):1175-1194.
Background
Synthetic nanoparticles are emerging as versatile tools in biomedical applications, particularly in the area of biomedical imaging. Nanoparticles 1 – 100 nm in diameter have dimensions comparable to biological functional units. Diverse surface chemistries, unique magnetic properties, tunable absorption and emission properties, and recent advances in the synthesis and engineering of various nanoparticles suggest their potential as probes for early detection of diseases such as cancer. Surface functionalization has expanded further the potential of nanoparticles as probes for molecular imaging.
Objective
To summarize emerging research of nanoparticles for biomedical imaging with increased selectivity and reduced nonspecific uptake with increased spatial resolution containing stabilizers conjugated with targeting ligands.
Methods
This review summarizes recent technological advances in the synthesis of various nanoparticle probes, and surveys methods to improve the targeting of nanoparticles for their application in biomedical imaging.
Conclusion
Structural design of nanomaterials for biomedical imaging continues to expand and diversify. Synthetic methods have aimed to control the size and surface characteristics of nanoparticles to control distribution, half-life and elimination. Although molecular imaging applications using nanoparticles are advancing into clinical applications, challenges such as storage stability and long-term toxicology should continue to be addressed.
doi:10.1517/17425240903229031
PMCID: PMC3097035  PMID: 19743894
biomedical imaging; molecular imaging; nanoparticle synthesis; surface modification; targeting
3.  Green Nanotechnology from Tea: Phytochemicals in Tea as Building Blocks for Production of Biocompatible Gold Nanoparticles 
Journal of materials chemistry  2009;19(19):2912-2920.
Phytochemicals occluded in tea have been extensively used as dietary supplements and as natural pharmaceuticals in the treatment of various diseases including human cancer. Results on the reduction capabilities of phytochemicals present in tea to reduce gold salts to the corresponding gold nanoparticles are presented in this paper. The phytochemicals present in tea serve the dual roles as effective reducing agents to reduce gold and also as stabilizers to provide robust coating on the gold nanoparticles in a single step. The Tea-generated gold nanoparticles (T-AuNPs), have demonstrated remarkable in vitro stability in various buffers including saline, histidine, HSA, and cysteine solutions. T-AuNPs with phytochemical coatings have shown significant affinity toward prostate (PC-3) and breast (MCF-7) cancer cells. Results on the cellular internalization of T-AuNPs through endocytosis into the PC-3 and MCF-7 cells are presented. The generation of T-AuNPs follows all principles of green chemistry and have been found to be non toxic as assessed through MTT assays. No ‘man made’ chemicals, other than gold salts, are used in this true biogenic green nanotechnological process thus paving excellent opportunities for their applications in molecular imaging and therapy.
doi:10.1039/b822015h
PMCID: PMC2737515  PMID: 20161162

Results 1-3 (3)