Search tips
Search criteria

Results 1-19 (19)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
2.  Differential Stabilities and Sequence-Dependent Base Pair Opening Dynamics of Watson–Crick Base Pairs with 5-Hydroxymethylcytosine, 5-Formylcytosine, or 5-Carboxylcytosine 
Biochemistry  2015;54(5):1294-1305.
5-Hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) form during active demethylation of 5-methylcytosine (5mC) and are implicated in epigenetic regulation of the genome. They are differentially processed by thymine DNA glycosylase (TDG), an enzyme involved in active demethylation of 5mC. Three modified Dickerson–Drew dodecamer (DDD) sequences, amenable to crystallographic and spectroscopic analyses and containing the 5′-CG-3′ sequence associated with genomic cytosine methylation, containing 5hmC, 5fC, or 5caC placed site-specifically into the 5′-T8X9G10-3′ sequence of the DDD, were compared. The presence of 5caC at the X9 base increased the stability of the DDD, whereas 5hmC or 5fC did not. Both 5hmC and 5fC increased imino proton exchange rates and calculated rate constants for base pair opening at the neighboring base pair A5:T8, whereas 5caC did not. At the oxidized base pair G4:X9, 5fC exhibited an increase in the imino proton exchange rate and the calculated kop. In all cases, minimal effects to imino proton exchange rates occurred at the neighboring base pair C3:G10. No evidence was observed for imino tautomerization, accompanied by wobble base pairing, for 5hmC, 5fC, or 5caC when positioned at base pair G4:X9; each favored Watson–Crick base pairing. However, both 5fC and 5caC exhibited intranucleobase hydrogen bonding between their formyl or carboxyl oxygens, respectively, and the adjacent cytosine N4 exocyclic amines. The lesion-specific differences observed in the DDD may be implicated in recognition of 5hmC, 5fC, or 5caC in DNA by TDG. However, they do not correlate with differential excision of 5hmC, 5fC, or 5caC by TDG, which may be mediated by differences in transition states of the enzyme-bound complexes.
PMCID: PMC4325598  PMID: 25632825
3.  Structural and Biochemical Characterization of AidC, a Quorum-Quenching Lactonase With Atypical Selectivity 
Biochemistry  2015;54(28):4342-4353.
Quorum-quenching catalysts are of interest for potential application as biochemical tools to interrogate interbacterial communication pathways, as anti-biofouling agents, and as anti-infective agents in plants and animals. Herein, the structure and function of AidC, an N-acyl-L-homoserine (AHL) lactonase from Chryseobacterium, is characterized. Steady-state kinetics show that zinc-supplemented AidC is one of the most efficient wild-type quorum-quenching enzymes characterized to date, with a kcat/KM value of approximately 2 × 106 M−1s−1 for N-heptanoyl-L-homoserine lactone. The enzyme has stricter substrate selectivity and significantly lower KM values (ca. 50 μM for preferred substrates) than typical AHL lactonases (ca. > 1 mM). X-ray crystal structures of AidC alone, and with the product N-hexanoyl-L-homoserine were determined at resolutions of 1.09 and 1.67 Å, respectively. Each structure displays as a dimer, and dimeric oligiomerization was also observed in solution by size-exclusion chromatography coupled with multi-angle light scattering. The structures reveal two atypical features as compared to previously characterized AHL lactonases: a ‘kinked’ α-helix that forms part of a closed binding pocket which provides affinity and enforces selectivity for AHL substrates, and an active-site His substitution that is usually found in a homologous family of phosphodiesterases. Implications for the catalytic mechanism of AHL lactonases are discussed.
PMCID: PMC4681436  PMID: 26115006
Quorum-quenching; N-acyl-L-homoserine lactone; lactonase; dizinc
4.  The activity of CouR, a MarR family transcriptional regulator, is modulated through a novel molecular mechanism 
Nucleic Acids Research  2015;44(2):595-607.
CouR, a MarR-type transcriptional repressor, regulates the cou genes, encoding p-hydroxycinnamate catabolism in the soil bacterium Rhodococcus jostii RHA1. The CouR dimer bound two molecules of the catabolite p-coumaroyl–CoA (Kd = 11 ± 1 μM). The presence of p-coumaroyl–CoA, but neither p-coumarate nor CoASH, abrogated CouR's binding to its operator DNA in vitro. The crystal structures of ligand-free CouR and its p-coumaroyl–CoA-bound form showed no significant conformational differences, in contrast to other MarR regulators. The CouR–p-coumaroyl–CoA structure revealed two ligand molecules bound to the CouR dimer with their phenolic moieties occupying equivalent hydrophobic pockets in each protomer and their CoA moieties adopting non-equivalent positions to mask the regulator's predicted DNA-binding surface. More specifically, the CoA phosphates formed salt bridges with predicted DNA-binding residues Arg36 and Arg38, changing the overall charge of the DNA-binding surface. The substitution of either arginine with alanine completely abrogated the ability of CouR to bind DNA. By contrast, the R36A/R38A double variant retained a relatively high affinity for p-coumaroyl–CoA (Kd = 89 ± 6 μM). Together, our data point to a novel mechanism of action in which the ligand abrogates the repressor's ability to bind DNA by steric occlusion of key DNA-binding residues and charge repulsion of the DNA backbone.
PMCID: PMC4737184  PMID: 26400178
6.  Functional and structural diversity in GH62 α-L-arabinofuranosidases from the thermophilic fungus Scytalidium thermophilum 
Microbial Biotechnology  2014;8(3):419-433.
The genome of the thermophilic fungus Scytalidium thermophilum (strain CBS 625.91) harbours a wide range of genes involved in carbohydrate degradation, including three genes, abf62A, abf62B and abf62C, predicted to encode glycoside hydrolase family 62 (GH62) enzymes. Transcriptome analysis showed that only abf62A and abf62C are actively expressed during growth on diverse substrates including straws from barley, alfalfa, triticale and canola. The abf62A and abf62C genes were expressed in Escherichia coli and the resulting recombinant proteins were characterized. Calcium-free crystal structures of Abf62C in apo and xylotriose bound forms were determined to 1.23 and 1.48 Å resolution respectively. Site-directed mutagenesis confirmed Asp55, Asp171 and Glu230 as catalytic triad residues, and revealed the critical role of non-catalytic residues Asp194, Trp229 and Tyr338 in positioning the scissile α-L-arabinofuranoside bond at the catalytic site. Further, the +2R substrate-binding site residues Tyr168 and Asn339, as well as the +2NR residue Tyr226, are involved in accommodating long-chain xylan polymers. Overall, our structural and functional analysis highlights characteristic differences between Abf62A and Abf62C, which represent divergent subgroups in the GH62 family.
PMCID: PMC4408175  PMID: 25267315
7.  The structure of Medicago truncatula δ1-pyrroline-5-carboxylate reductase provides new insights into regulation of proline biosynthesis in plants 
The two pathways for proline biosynthesis in higher plants share the last step, the conversion of δ1-pyrroline-5-carboxylate (P5C) to L-proline, which is catalyzed by P5C reductase (P5CR, EC with the use of NAD(P)H as a coenzyme. There is increasing amount of evidence to suggest a complex regulation of P5CR activity at the post-translational level, yet the molecular basis of these mechanisms is unknown. Here we report the three-dimensional structure of the P5CR enzyme from the model legume Medicago truncatula (Mt). The crystal structures of unliganded MtP5CR decamer, and its complexes with the products NAD+, NADP+, and L-proline were refined using x-ray diffraction data (at 1.7, 1.85, 1.95, and 2.1 Å resolution, respectively). Based on the presented structural data, the coenzyme preference for NADPH over NADH was explained, and NADPH is suggested to be the only coenzyme used by MtP5CR in vivo. Furthermore, the insensitivity of MtP5CR to feed-back inhibition by proline, revealed by enzymatic analysis, was correlated with structural features. Additionally, a mechanism for the modulation of enzyme activity by chloride anions is discussed, as well as the rationale for the possible development of effective enzyme inhibitors.
PMCID: PMC4626632  PMID: 26579138
protein structure; decamer; coenzyme preference; salt stress; abiotic stress; P5C reductase; P5CR
8.  Evolution of plant δ1-pyrroline-5-carboxylate reductases from phylogenetic and structural perspectives 
Proline plays a crucial role in cell growth and stress responses, and its accumulation is essential for the tolerance of adverse environmental conditions in plants. Two routes are used to biosynthesize proline in plants. The main route uses glutamate as a precursor, while in the other route proline is derived from ornithine. The terminal step of both pathways, the conversion of δ1-pyrroline-5-carboxylate (P5C) to L-proline, is catalyzed by P5C reductase (P5CR) using NADH or NADPH as a cofactor. Since P5CRs are important housekeeping enzymes, they are conserved across all domains of life and appear to be relatively unaffected throughout evolution. However, global analysis of these enzymes unveiled significant functional diversity in the preference for cofactors (NADPH vs. NADH), variation in metal dependence and the differences in the oligomeric state. In our study we investigated evolutionary patterns through phylogenetic and structural analysis of P5CR representatives from all kingdoms of life, with emphasis on the plant species. We also attempted to correlate local sequence/structure variation among the functionally and structurally characterized members of the family.
PMCID: PMC4522605  PMID: 26284089
P5C reductase; phylogenetic analysis; 3-D structures of P5CRs; oligomer structure prediction; cofactor preference
9.  Toroidal structure and DNA cleavage by the CRISPR-associated [4Fe-4S]-cluster containing Cas4 nuclease SSO0001 from Sulfolobus solfataricus 
Journal of the American Chemical Society  2013;135(46):17476-17487.
Cas4 proteins, a core protein family associated with the microbial system of adaptive immunity CRISPR, are predicted to function in the adaptation step of the CRISPR mechanism. Here we show that the Cas4 protein SSO0001 from the archaeon Sulfolobus solfataricus has metal-dependent endonuclease and 5' to 3' exonuclease activities against single-stranded DNA, as well as ATP-independent DNA unwinding activity toward double-stranded DNA. The crystal structure of SSO0001 revealed a decameric toroid formed by five dimers with each protomer containing one [4Fe-4S] cluster and one Mn2+ ion bound in the active site located inside the internal tunnel. The conserved RecB motif and four Cys residues are important for DNA binding and cleavage activities, whereas DNA unwinding depends on several residues located near the [4Fe-4S]-cluster. Our results suggest that Cas4 proteins might contribute to the addition of novel CRISPR spacers through the formation of 3'-DNA overhangs and to the degradation of foreign DNA.
PMCID: PMC3889865  PMID: 24171432
CRISPR interference; Cas4; exonuclease; RecB motif; [4Fe-4S] cluster
10.  The CRISPR-associated Cas4 protein Pcal_0546 from Pyrobaculum calidifontis contains a [2Fe-2S] cluster: crystal structure and nuclease activity 
Nucleic Acids Research  2014;42(17):11144-11155.
Cas4 nucleases constitute a core family of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) associated proteins, but little is known about their structure and activity. Here we report the crystal structure of the Cas4 protein Pcal_0546 from Pyrobaculum calidifontis, which revealed a monomeric protein with a RecB-like fold and one [2Fe-2S] cluster coordinated by four conserved Cys residues. Pcal_0546 exhibits metal-dependent 5′ to 3′ exonuclease activity against ssDNA substrates, whereas the Cas4 protein SSO1391 from Sulfolobus solfataricus can cleave ssDNA in both the 5′ to 3′ and 3′ to 5′ directions. The active site of Pcal_0546 contains a bound metal ion coordinated by the side chains of Asp123, Glu136, His146, and the main chain carbonyl of Ile137. Site-directed mutagenesis of Pcal_0546 and SSO1391 revealed that the residues of RecB motifs II, III and QhXXY are critical for nuclease activity, whereas mutations of the conserved Cys residues resulted in a loss of the iron-sulfur cluster, but had no effect on DNA cleavage. Our results revealed the biochemical diversity of Cas4 nucleases, which can have different oligomeric states, contain [4Fe-4S] or [2Fe-2S] clusters, and cleave single stranded DNA in different directions producing single-stranded DNA overhangs, which are potential intermediates for the synthesis of new CRISPR spacers.
PMCID: PMC4176176  PMID: 25200083
11.  Salvage of Failed Protein Targets by Reductive Alkylation 
The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins.
PMCID: PMC4078742  PMID: 24590719
Chemical modification; Lysine reductive alkylation; Methylation; Ethylation; Isopropylation; Protein crystallization
12.  The Dimerization Domain in DapE Enzymes Is required for Catalysis 
PLoS ONE  2014;9(5):e93593.
The emergence of antibiotic-resistant bacterial strains underscores the importance of identifying new drug targets and developing new antimicrobial compounds. Lysine and meso-diaminopimelic acid are essential for protein production and bacterial peptidoglycan cell wall remodeling and are synthesized in bacteria by enzymes encoded within dap operon. Therefore dap enzymes may serve as excellent targets for developing a new class of antimicrobial agents. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) converts N-succinyl-L,L-diaminopimelic acid to L,L-diaminopimelic acid and succinate. The enzyme is composed of catalytic and dimerization domains, and belongs to the M20 peptidase family. To understand the specific role of each domain of the enzyme we engineered dimerization domain deletion mutants of DapEs from Haemophilus influenzae and Vibrio cholerae, and characterized these proteins structurally and biochemically. No activity was observed for all deletion mutants. Structural comparisons of wild-type, inactive monomeric DapE enzymes with other M20 peptidases suggest that the dimerization domain is essential for DapE enzymatic activity. Structural analysis and molecular dynamics simulations indicate that removal of the dimerization domain increased the flexibility of a conserved active site loop that may provide critical interactions with the substrate.
PMCID: PMC4012986  PMID: 24806882
13.  Structural and functional characterization of microcin C resistance peptidase MccF from Bacillus anthracis 
Journal of molecular biology  2012;420(0):366-383.
Microcin C (McC) is heptapeptide-adenylate antibiotic produced by Escherichia coli strains carrying the mccABCDEF gene cluster encoding enzymes, in addition to the heptapeptide structural gene mccA, necessary for McC biosynthesis and self-immunity of the producing cell. The heptapeptide facilitates McC transport into susceptible cells, where it is processed releasing a non-hydrolyzable aminoacyl adenylate that inhibits an essential aminoacyl-tRNA synthetase. The self-immunity gene mccF encodes a specialized serine-peptidase that cleaves an amide bond connecting the peptidyl or aminoacyl moieties of, respectively, intact and processed McC with the nucleotidyl moiety. Most mccF orthologs from organisms other than E. coli are not linked to the McC biosynthesis gene cluster. Here, we show that a protein product of one such gene, MccF from Bacillus anthracis (BaMccF), is able to cleave intact and processed McC and we present a series of structures of this protein. Structural analysis of apo-BaMccF and its AMP-complex reveal specific features of MccF-like peptidases that allow them to interact with substrates containing nucleotidyl moieties. Sequence analyses and phylogenetic reconstructions suggest that several distinct subfamilies form the MccF clade of the large S66 family of bacterial serine peptidases. We show that various representatives of the MccF clade can specifically detoxify non-hydrolyzable aminoacyl adenylates differing in their aminoacyl moieties. We hypothesize that bacterial mccF genes serve as a source of bacterial antibiotic resistance.
PMCID: PMC3690760  PMID: 22516613
MccF; serine peptidase; nucleophilic elbow; catalytic triad (Ser-His-Glu); substrate binding loop
14.  A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair 
Molecular microbiology  2010;79(2):484-502.
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and the associated proteins (Cas) comprise a system of adaptive immunity against viruses and plasmids in prokaryotes. Cas1 is a CRISPR-associated protein that is common to all CRISPR-containing prokaryotes but its function remains obscure. Here we show that the purified Cas1 protein of Escherichia coli (YgbT) exhibits nuclease activity against single-stranded and branched DNAs including Holliday junctions, replication forks, and 5′-flaps. The crystal structure of YgbT and site-directed mutagenesis have revealed the potential active site. Genome-wide screens show that YgbT physically and genetically interacts with key components of DNA repair systems, including recB, recC and ruvB. Consistent with these findings, the ygbT deletion strain showed increased sensitivity to DNA damage and impaired chromosomal segregation. Similar phenotypes were observed in strains with deletion of CRISPR clusters, suggesting that the function of YgbT in repair involves interaction with the CRISPRs. These results show that YgbT belongs to a novel, structurally distinct family of nucleases acting on branched DNAs and suggest that, in addition to antiviral immunity, at least some components of the CRISPR-Cas system have a function in DNA repair.
PMCID: PMC3071548  PMID: 21219465
Cas1; CRISPR; DNA recombination; DNA repair; nuclease; YgbT
15.  Structural Basis for Catalysis by the Mono and Dimetalated forms of the dapE-encoded N-succinyl-L,L-Diaminopimelic Acid Desuccinylase 
Journal of molecular biology  2010;397(3):617-626.
Biosynthesis of lysine and meso-diaminopimelic acid in bacteria provides essential components for protein synthesis and construction of the bacterial peptidoglycan cell wall. The dapE operon enzymes synthesize both meso-diaminopimelic acid and lysine and, therefore, represent a potential targets for novel antibacterials. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase functions in a late step of the pathway and converts N-succinyl-L,L-diaminopimelic acid (L,L-SDAP) to L,L-diaminopimelic acid and succinate. Deletion of the dapE gene is lethal to Helicobacter pylori and Mycobacterium smegmatis indicating that DapE’s are essential for cell growth and proliferation. Since there are no similar pathways in humans, inhibitors that target DapE may have selective toxicity against only bacteria. A major limitation in developing antimicrobial agents that target DapE has been the lack of structural information. Herein we report the high-resolution X-ray crystal structures of the DapE from Haemophilus influenzae with one and two zinc ions bound in the active site, respectively. These two forms show different activity. Based on these newly determined structures we propose a revised catalytic mechanism of peptide bond cleavage by DapE enzymes. These structures provide important insight into catalytic mechanism of DapE enzymes as well as a structural foundation that is critical for the rational design of DapE inhibitors.
PMCID: PMC2885003  PMID: 20138056
16.  Cleavable C-terminal His-tag vectors for structure determination 
High-throughput structural genomics projects seek to delineate protein structure space by determining the structure of representatives of all major protein families. Generally this is accomplished by processing numerous proteins through standardized protocols, for the most part involving purification of N-terminally His-tagged proteins. Often proteins that fail this approach are abandoned, but in many cases further effort is warranted because of a protein’s intrinsic value. In addition, failure often occurs relatively far into the path to structure determination, and many failed proteins passed the first critical step, expression as a soluble protein. Salvage pathways seek to recoup the investment in this subset of failed proteins through alternative cloning, nested truncations, chemical modification, mutagenesis, screening buffers, ligands and modifying processing steps. To this end we have developed a series of ligation-independent cloning expression vectors that append various cleavable C-terminal tags instead of the conventional N-terminal tags. In an initial set of 16 proteins that failed with an N-terminal appendage, structures were obtained for C-terminally tagged derivatives of five proteins, including an example for which several alternative salvaging steps had failed. The new vectors allow appending C-terminal His6-tag and His6- and MBP-tags, and are cleavable with TEV or with both TEV and TVMV proteases.
PMCID: PMC2885959  PMID: 20213425
LIC; TEV; C-terminal; His-tag; High-throughput; Structural genomics
17.  Assisted assignment of ligands corresponding to unknown electron density 
A semi-automated computational procedure to assist in the identification of bound ligands from unknown electron density has been developed. The atomic surface surrounding the density blob is compared to a library of three-dimensional ligand binding surfaces extracted from the Protein Data Bank (PDB). Ligands corresponding to surfaces which share physicochemical texture and geometric shape similarities are considered for assignment. The method is benchmarked against a set of well represented ligands from the PDB, in which we show that we can identify the correct ligand based on the corresponding binding surface. Finally, we apply the method during model building and refinement stages from structural genomics targets in which unknown density blobs were discovered. A semi-automated computational method is described which aims to assist crystallographers with assigning the identity of a ligand corresponding to unknown electron density. Using shape and physicochemical similarity assessments between the protein surface surrounding the density and a database of known ligand binding surfaces, a plausible list of candidate ligands are identified for consideration. The method is validated against highly observed ligands from the Protein Data Bank and results are shown from its use in a high-throughput structural genomics pipeline.
PMCID: PMC2885970  PMID: 20091237
Electron density assignment; Function annotation; Ligand identification; Ligand assignment; Protein surfaces
18.  The dapE-encoded N-succinyl-L,L-Diaminopimelic Acid Desuccinylase from Haemophilus influenzae Contains two Active Site Histidine Residues 
The catalytic and structural properties of the H67A and H349A altered dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) from H. influenzae were investigated. Based on sequence alignment with CPG2 both H67 and H349 were predicted to be Zn(II) ligands. Catalytic activity was observed for the H67A altered DapE enzyme which exhibited kcat = 1.5 ± 0.5 sec−1 and Km = 1.4 ± 0.3 mM. No catalytic activity was observed for H349A under the experimental conditions used. The EPR and electronic absorption data indicate that the Co(II) ion bound to H349A-DapE is analogous to WT DapE after the addition of a single Co(II) ion. The addition of one equivalent of Co(II) to H67A altered DapE provides spectra that are very different from the first Co(II) binding site of the WT enzyme, but similar to the second binding site. The EPR and electronic absorption data, in conjunction with the kinetic data, are consistent with the assignment of H67 and H349 as active site metal ligands for the DapE from H. influenzae. Furthermore, the data suggest that H67 is a ligand in the first metal binding site while H349 resides in the second metal binding site. A three-dimensional homology structure of the DapE from H. influenzae was generated using the X-ray crystal structure of the DapE from N. meningitidis as a template and superimposed on the structure of AAP. This homology structure confirms the assignment of H67 and H349 as active site ligands. The superimposition of the homology model of DapE with the dizinc(II) structure of AAP indicates that within 4.0 Å of the Zn(II) binding sites of AAP, all of the amino acid residues of DapE are nearly identical.
PMCID: PMC2678232  PMID: 18712420
biomedicine; biosynthesis; electron paramagnetic resonance; enzyme kinetics; homology model; site-directed mutagenesis; structure-function relationship

Results 1-19 (19)