Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Expression, crystallization and preliminary X-ray diffraction analysis of the CMM2 region of the Arabidopsis thaliana Morpheus’ molecule 1 protein 
In order to investigate its function in transcriptional gene silencing, the highly conserved motif 2 from A. thaliana Morpheus’ molecule 1 protein was expressed, purified and crystallized. X-ray diffraction analysis is reported to a resolution of 3.2 Å.
Of the known epigenetic control regulators found in plants, the Morpheus’ molecule 1 (MOM1) protein is atypical in that the deletion of MOM1 does not affect the level of epigenetic marks controlling the transcriptional status of the genome. A short 197-amino-acid fragment of the MOM1 protein sequence can complement MOM1 deletion when coupled to a nuclear localization signal, suggesting that this region contains a functional domain that compensates for the loss of the full-length protein. Numerous constructs centred on the highly conserved MOM1 motif 2 (CMM2) present in these 197 residues have been generated and expressed in Escherichia coli. Following purification and crystallization screening, diamond-shaped single crystals were obtained that diffracted to ∼3.2 Å resolution. They belonged to the trigonal space group P3121 (or P3221), with unit-cell parameters a = 85.64, c = 292.74 Å. Structure determination is ongoing.
PMCID: PMC2917290  PMID: 20693667
Morpheus’ molecule 1; conserved MOM1 motif 2; coiled-coil domain; epigenetic; transcriptional gene silencing
2.  Structural Basis of Transcriptional Gene Silencing Mediated by Arabidopsis MOM1 
PLoS Genetics  2012;8(2):e1002484.
Shifts between epigenetic states of transcriptional activity are typically correlated with changes in epigenetic marks. However, exceptions to this rule suggest the existence of additional, as yet uncharacterized, layers of epigenetic regulation. MOM1, a protein of 2,001 amino acids that acts as a transcriptional silencer, represents such an exception. Here we define the 82 amino acid domain called CMM2 (Conserved MOM1 Motif 2) as a minimal MOM1 fragment capable of transcriptional regulation. As determined by X-ray crystallography, this motif folds into an unusual hendecad-based coiled-coil. Structure-based mutagenesis followed by transgenic complementation tests in plants demonstrate that CMM2 and its dimerization are effective for transcriptional suppression at chromosomal loci co-regulated by MOM1 and the siRNA pathway but not at loci controlled by MOM1 in an siRNA–independent fashion. These results reveal a surprising separation of epigenetic activities that enable the single, large MOM1 protein to coordinate cooperating mechanisms of epigenetic regulation.
Author Summary
Epigenetic shifts in transcriptional activities are usually correlated with changes in chromatin properties and covalent modification of DNA and/or histones. There are, however, exceptional regulators that are able to switch epigenetic states without the apparent involvement of changes in chromatin or DNA modifications. MOM1 protein, derived from CHD3 chromatin remodelers, belongs to this group. Here we defined a very small domain of MOM1 (less than 5% of its total sequence) that is sufficient for epigenetic regulation. We solved the structure of this domain and found that it forms a dimer with each monomer consisting of unusual consecutive 11 amino-acid hendecad repeats folding into an antiparallel coiled-coil. In vivo experiments demonstrated that the formation of this coiled-coil is essential for silencing activity; however, it is effective only at loci co-silenced by MOM1 and small RNAs. At loci not controlled by small RNAs, the entire MOM1 protein is required. Our results demonstrate that a single epigenetic regulator is able to differentially use its domains to control diverse chromosomal targets. The acquisition of the coiled-coil domain of MOM1 reflects a neofunctionalization of CHD3 proteins, which allowed MOM1 to broaden its activity and to provide input into multiple epigenetic pathways.
PMCID: PMC3276543  PMID: 22346760
3.  Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction 
A cyclic olefin homopolymer-based microfluidics system has been established for protein crystallization and in situ X-ray diffraction.
Microfluidics is a promising technology for the rapid iden­tification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus’ molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 Å resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts.
PMCID: PMC2733880  PMID: 19690369
cyclic olefin homopolymers; microfluidics; crystallization; in situ X-ray diffraction
4.  Divergent Evolution of CHD3 Proteins Resulted in MOM1 Refining Epigenetic Control in Vascular Plants 
PLoS Genetics  2008;4(8):e1000165.
Arabidopsis MOM1 is required for the heritable maintenance of transcriptional gene silencing (TGS). Unlike many other silencing factors, depletion of MOM1 evokes transcription at selected loci without major changes in DNA methylation or histone modification. These loci retain unusual, bivalent chromatin properties, intermediate to both euchromatin and heterochromatin. The structure of MOM1 previously suggested an integral nuclear membrane protein with chromatin-remodeling and actin-binding activities. Unexpected results presented here challenge these presumed MOM1 activities and demonstrate that less than 13% of MOM1 sequence is necessary and sufficient for TGS maintenance. This active sequence encompasses a novel Conserved MOM1 Motif 2 (CMM2). The high conservation suggests that CMM2 has been the subject of strong evolutionary pressure. The replacement of Arabidopsis CMM2 by a poplar motif reveals its functional conservation. Interspecies comparison suggests that MOM1 proteins emerged at the origin of vascular plants through neo-functionalization of the ubiquitous eukaryotic CHD3 chromatin remodeling factors. Interestingly, despite the divergent evolution of CHD3 and MOM1, we observed functional cooperation in epigenetic control involving unrelated protein motifs and thus probably diverse mechanisms.
Author Summary
Epigenetic regulation of transcription usually involves changes in histone modifications, as well as DNA methylation changes in plants and mammals. Previously, we found an exceptional epigenetic regulator in Arabidopsis, MOM1, acting independently of these epigenetic marks. Interestingly, MOM1 controls loci associated with bivalent chromatin marks, intermediate to active euchromatin and silent heterochromatin. Such bivalent marks are often associated with newly inserted and/or potentially active transposons, silent transgenes, and certain chromosomal loci. Notably, bivalent chromatin seems to be characteristic for embryonic stem cells, where such loci change their activity and determination of epigenetic marks during cell differentiation. Here, we provide evidence that in vascular plants, the MOM1-like proteins evolved from the ubiquitous eukaryotic chromatin remodeling factor CHD3. The domains necessary for CHD3 function degenerated in MOM1, became dispensable for its gene silencing activity, and were replaced by a novel, unrelated domain providing silencing function. Therefore, MOM1-like proteins use a different silencing mechanism compared to the ancestral CHD3s. In spite of this divergent evolution, CHD3 and MOM1 seem to retain a functional cooperation in control of transcriptionally silent loci. Our results provide an unprecedented example of an evolutionary path for epigenetic components resulting in increased complexity of an epigenetic regulatory network characteristic for multicellular eukaryotes.
PMCID: PMC2507757  PMID: 18725928

Results 1-4 (4)