Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  A Synaptic Mechanism for Temporal Filtering of Visual Signals 
PLoS Biology  2014;12(10):e1001972.
Synaptic volume matters! The size of the presynaptic compartment of retinal bipolar cells controls the amplitude, speed, and adaptation of synaptic transmission.
The visual system transmits information about fast and slow changes in light intensity through separate neural pathways. We used in vivo imaging to investigate how bipolar cells transmit these signals to the inner retina. We found that the volume of the synaptic terminal is an intrinsic property that contributes to different temporal filters. Individual cells transmit through multiple terminals varying in size, but smaller terminals generate faster and larger calcium transients to trigger vesicle release with higher initial gain, followed by more profound adaptation. Smaller terminals transmitted higher stimulus frequencies more effectively. Modeling global calcium dynamics triggering vesicle release indicated that variations in the volume of presynaptic compartments contribute directly to all these differences in response dynamics. These results indicate how one neuron can transmit different temporal components in the visual signal through synaptic terminals of varying geometries with different adaptational properties.
Author Summary
The process of neurotransmission involves the conversion of electrical signals into the release of a chemical neurotransmitter from the neurons synaptic terminal, and the key trigger for this release is a rise in calcium concentration. Accordingly, the amplitude and speed of this calcium signal controls the amplitude and time-course of synaptic communication. Working on the synaptic terminals of fish retinal bipolar cells, we show that the presynaptic calcium signal and the subsequent neurotransmitter release are shaped by the basic property of synapse volume. Using a combination of experimental approaches and computational models, we found that large synapses are slow and adapt little during ongoing stimulation, while small synapses are fast and show more profound adaptation. This observation leads to a second key concept: since neurons usually have several presynaptic terminals that may vary in volume, a single neuron can, in principle, forward different synaptic signals to different postsynaptic partners. We provide direct evidence that this is the case for bipolar cells of the fish retina.
PMCID: PMC4205119  PMID: 25333637
2.  Synaptic mechanisms of adaptation and sensitization in the retina 
Nature neuroscience  2013;16(7):934-941.
Sensory systems continually adjust the way stimuli are processed. What are the circuit mechanisms underlying this plasticity? We investigated how synapses in the retina of zebrafish adjust to changes in the temporal contrast of a visual stimulus by imaging activity in vivo. Following an increase in contrast, bipolar cell synapses with strong initial responses depressed, whereas synapses with weak initial responses facilitated. Depression and facilitation predominated in different strata of the inner retina, where bipolar cell output was anticorrelated with the activity of amacrine cell synapses providing inhibitory feedback. Pharmacological block of GABAergic feedback converted facilitating bipolar cell synapses into depressing ones. These results indicate that depression intrinsic to bipolar cell synapses causes adaptation of the ganglion cell response to contrast, whereas depression in amacrine cell synapses causes sensitization. Distinct microcircuits segregating to different layers of the retina can cause simultaneous increases or decreases in the gain of neural responses.
PMCID: PMC3924174  PMID: 23685718
3.  Encoding of Luminance and Contrast by Linear and Nonlinear Synapses in the Retina 
Neuron  2012;73(4-2):758-773.
Understanding how neural circuits transmit information is technically challenging because the neural code is contained in the activity of large numbers of neurons and synapses. Here, we use genetically encoded reporters to image synaptic transmission across a population of sensory neurons—bipolar cells in the retina of live zebrafish. We demonstrate that the luminance sensitivities of these synapses varies over 104 with a log-normal distribution. About half the synapses made by ON and OFF cells alter their polarity of transmission as a function of luminance to generate a triphasic tuning curve with distinct maxima and minima. These nonlinear synapses signal temporal contrast with greater sensitivity than linear ones. Triphasic tuning curves increase the dynamic range over which bipolar cells signal light and improve the efficiency with which luminance information is transmitted. The most efficient synapses signaled luminance using just 1 synaptic vesicle per second per distinguishable gray level.
► Bipolar cell synapses display luminance sensitivities varying over 104 ► Transmission from ON and OFF cells can switch polarity ► Nonlinear synapses signal luminance more efficiently than linear ones ► Nonlinear synapses display higher contrast-sensitivity than linear ones
How does the visual system extract information from visual scenes with wide variations in luminance? Odermatt et al. found that bipolar cells have varying sensitivity to luminance and extend the range of luminances that they signal by generating responses with different polarities.
PMCID: PMC3314971  PMID: 22365549
4.  Spikes in Retinal Bipolar Cells Phase-Lock to Visual Stimuli with Millisecond Precision 
Current Biology  2011;21(22):1859-1869.
The conversion of an analog stimulus into the digital form of spikes is a fundamental step in encoding sensory information. Here, we investigate this transformation in the visual system of fish by in vivo calcium imaging and electrophysiology of retinal bipolar cells, which have been assumed to be purely graded neurons.
Synapses of all major classes of retinal bipolar cell encode visual information by using a combination of spikes and graded signals. Spikes are triggered within the synaptic terminal and, although sparse, phase-lock to a stimulus with a jitter as low as 2–3 ms. Spikes in bipolar cells encode a visual stimulus less reliably than spikes in ganglion cells but with similar temporal precision. The spike-generating mechanism does not alter the temporal filtering of a stimulus compared with the generator potential. The amplitude of the graded component of the presynaptic calcium signal can vary in time, and small fluctuations in resting membrane potential alter spike frequency and even switch spiking on and off.
In the retina of fish, the millisecond precision of spike coding begins in the synaptic terminal of bipolar cells. This neural compartment regulates the frequency of digital signals transmitted to the inner retina as well as the strength of graded signals.
Graphical Abstract
► The spike code of vision begins in retinal bipolar cells ► Spikes in bipolar cells phase-lock to visual stimuli with millisecond precision ► Spiking and graded calcium signals can switch on and off at individual synapses ► Spikes in bipolar cells encode a stimulus less reliably than spikes in ganglion cells
PMCID: PMC3235547  PMID: 22055291
5.  Network Adaptation Improves Temporal Representation of Naturalistic Stimuli in Drosophila Eye: I Dynamics 
PLoS ONE  2009;4(1):e4307.
Because of the limited processing capacity of eyes, retinal networks must adapt constantly to best present the ever changing visual world to the brain. However, we still know little about how adaptation in retinal networks shapes neural encoding of changing information. To study this question, we recorded voltage responses from photoreceptors (R1–R6) and their output neurons (LMCs) in the Drosophila eye to repeated patterns of contrast values, collected from natural scenes. By analyzing the continuous photoreceptor-to-LMC transformations of these graded-potential neurons, we show that the efficiency of coding is dynamically improved by adaptation. In particular, adaptation enhances both the frequency and amplitude distribution of LMC output by improving sensitivity to under-represented signals within seconds. Moreover, the signal-to-noise ratio of LMC output increases in the same time scale. We suggest that these coding properties can be used to study network adaptation using the genetic tools in Drosophila, as shown in a companion paper (Part II).
PMCID: PMC2628724  PMID: 19180196
6.  Network Adaptation Improves Temporal Representation of Naturalistic Stimuli in Drosophila Eye: II Mechanisms 
PLoS ONE  2009;4(1):e4306.
Retinal networks must adapt constantly to best present the ever changing visual world to the brain. Here we test the hypothesis that adaptation is a result of different mechanisms at several synaptic connections within the network. In a companion paper (Part I), we showed that adaptation in the photoreceptors (R1–R6) and large monopolar cells (LMC) of the Drosophila eye improves sensitivity to under-represented signals in seconds by enhancing both the amplitude and frequency distribution of LMCs' voltage responses to repeated naturalistic contrast series. In this paper, we show that such adaptation needs both the light-mediated conductance and feedback-mediated synaptic conductance. A faulty feedforward pathway in histamine receptor mutant flies speeds up the LMC output, mimicking extreme light adaptation. A faulty feedback pathway from L2 LMCs to photoreceptors slows down the LMC output, mimicking dark adaptation. These results underline the importance of network adaptation for efficient coding, and as a mechanism for selectively regulating the size and speed of signals in neurons. We suggest that concert action of many different mechanisms and neural connections are responsible for adaptation to visual stimuli. Further, our results demonstrate the need for detailed circuit reconstructions like that of the Drosophila lamina, to understand how networks process information.
PMCID: PMC2628722  PMID: 19180195

Results 1-6 (6)