PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-19 (19)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Evidence of Rabies Virus Exposure among Humans in the Peruvian Amazon 
In May of 2010, two communities (Truenococha and Santa Marta) reported to be at risk of vampire bat depredation were surveyed in the Province Datem del Marañón in the Loreto Department of Perú. Risk factors for bat exposure included age less than or equal to 25 years and owning animals that had been bitten by bats. Rabies virus neutralizing antibodies (rVNAs) were detected in 11% (7 of 63) of human sera tested. Rabies virus ribonucleoprotein (RNP) immunoglobulin G (IgG) antibodies were detected in the sera of three individuals, two of whom were also seropositive for rVNA. Rabies virus RNP IgM antibodies were detected in one respondent with no evidence of rVNA or RNP IgG antibodies. Because one respondent with positive rVNA results reported prior vaccination and 86% (six of seven) of rVNA-positive respondents reported being bitten by bats, these data suggest nonfatal exposure of persons to rabies virus, which is likely associated with vampire bat depredation.
doi:10.4269/ajtmh.2012.11-0689
PMCID: PMC3414554  PMID: 22855749
2.  Reassortant Group A Rotavirus from Straw-colored Fruit Bat (Eidolon helvum) 
Emerging Infectious Diseases  2010;16(12):1844-1852.
TOC summary: Bats may be reservoirs of zoonotic viruses that threaten human health.
Bats are known reservoirs of viral zoonoses. We report genetic characterization of a bat rotavirus (Bat/KE4852/07) detected in the feces of a straw-colored fruit bat (Eidolon helvum). Six bat rotavirus genes (viral protein [VP] 2, VP6, VP7, nonstructural protein [NSP] 2, NSP3, and NSP5) shared ancestry with other mammalian rotaviruses but were distantly related. The VP4 gene was nearly identical to that of human P[6] rotavirus strains, and the NSP4 gene was closely related to those of previously described mammalian rotaviruses, including human strains. Analysis of partial sequence of the VP1 gene indicated that it was distinct from cognate genes of other rotaviruses. No sequences were obtained for the VP3 and NSP1 genes of the bat rotavirus. This rotavirus was designated G25-P[6]-I15-R8(provisional)-C8-Mx-Ax-N8-T11-E2-H10. Results suggest that several reassortment events have occurred between human, animal, and bat rotaviruses. Several additional rotavirus strains were detected in bats.
doi:10.3201/eid1612.101089
PMCID: PMC3294550  PMID: 21122212
Straw-colored fruit bat; Eidolon helvum; rotavirus; viruses; reassortment; heterologous genome segments; podcast; zoonoses; research
3.  Bartonella spp. in Bats, Kenya 
Emerging Infectious Diseases  2010;16(12):1875-1881.
We report the presence and diversity of Bartonella spp. in bats of 13 insectivorous and frugivorous species collected from various locations across Kenya. Bartonella isolates were obtained from 23 Eidolon helvum, 22 Rousettus aegyptiacus, 4 Coleura afra, 7 Triaenops persicus, 1 Hipposideros commersoni, and 49 Miniopterus spp. bats. Sequence analysis of the citrate synthase gene from the obtained isolates showed a wide assortment of Bartonella strains. Phylogenetically, isolates clustered in specific host bat species. All isolates from R. aegyptiacus, C. afra, and T. persicus bats clustered in separate monophyletic groups. In contrast, E. helvum and Miniopterus spp. bats harbored strains that clustered in several groups. Further investigation is needed to determine whether these agents are responsible for human illnesses in the region.
doi:10.3201/eid1612.100601
PMCID: PMC3294596  PMID: 21122216
Bacteria; Bartonella; bats; zoonoses; Kenya; research
4.  Identification of a Severe Acute Respiratory Syndrome Coronavirus-Like Virus in a Leaf-Nosed Bat in Nigeria 
mBio  2010;1(4):e00208-10.
Bats are reservoirs for emerging zoonotic viruses that can have a profound impact on human and animal health, including lyssaviruses, filoviruses, paramyxoviruses, and severe acute respiratory syndrome coronaviruses (SARS-CoVs). In the course of a project focused on pathogen discovery in contexts where human-bat contact might facilitate more efficient interspecies transmission of viruses, we surveyed gastrointestinal tissue obtained from bats collected in caves in Nigeria that are frequented by humans. Coronavirus consensus PCR and unbiased high-throughput pyrosequencing revealed the presence of coronavirus sequences related to those of SARS-CoV in a Commerson’s leaf-nosed bat (Hipposideros commersoni). Additional genomic sequencing indicated that this virus, unlike subgroup 2b CoVs, which includes SARS-CoV, is unique, comprising three overlapping open reading frames between the M and N genes and two conserved stem-loop II motifs. Phylogenetic analyses in conjunction with these features suggest that this virus represents a new subgroup within group 2 CoVs.
IMPORTANCE
Bats (order Chiroptera, suborders Megachiroptera and Microchiroptera) are reservoirs for a wide range of viruses that cause diseases in humans and livestock, including the severe acute respiratory syndrome coronavirus (SARS-CoV), responsible for the global SARS outbreak in 2003. The diversity of viruses harbored by bats is only just beginning to be understood because of expanded wildlife surveillance and the development and application of new tools for pathogen discovery. This paper describes a new coronavirus, one with a distinctive genomic organization that may provide insights into coronavirus evolution and biology.
doi:10.1128/mBio.00208-10
PMCID: PMC2975989  PMID: 21063474
5.  Marburg Virus in Fruit Bat, Kenya 
Emerging Infectious Diseases  2010;16(2):352-354.
doi:10.3201/eid1602.091269
PMCID: PMC2958024  PMID: 20113584
Lake Victoria Marburgvirus; Marburg virus; bats; Egyptian fruit bat; Rousettus aegyptiacus; zoonosis; Kenya; filovirus; viruses; letter
6.  Oral Rabies Vaccination in North America: Opportunities, Complexities, and Challenges 
Steps to facilitate inter-jurisdictional collaboration nationally and continentally have been critical for implementing and conducting coordinated wildlife rabies management programs that rely heavily on oral rabies vaccination (ORV). Formation of a national rabies management team has been pivotal for coordinated ORV programs in the United States of America. The signing of the North American Rabies Management Plan extended a collaborative framework for coordination of surveillance, control, and research in border areas among Canada, Mexico, and the US. Advances in enhanced surveillance have facilitated sampling of greater scope and intensity near ORV zones for improved rabies management decision-making in real time. The value of enhanced surveillance as a complement to public health surveillance was best illustrated in Ohio during 2007, where 19 rabies cases were detected that were critical for the formulation of focused contingency actions for controlling rabies in this strategically key area. Diverse complexities and challenges are commonplace when applying ORV to control rabies in wild meso-carnivores. Nevertheless, intervention has resulted in notable successes, including the elimination of an arctic fox (Vulpes lagopus) rabies virus variant in most of southern Ontario, Canada, with ancillary benefits of elimination extending into Quebec and the northeastern US. Progress continues with ORV toward preventing the spread and working toward elimination of a unique variant of gray fox (Urocyon cinereoargenteus) rabies in west central Texas. Elimination of rabies in coyotes (Canis latrans) through ORV contributed to the US being declared free of canine rabies in 2007. Raccoon (Procyon lotor) rabies control continues to present the greatest challenges among meso-carnivore rabies reservoirs, yet to date intervention has prevented this variant from gaining a broad geographic foothold beyond ORV zones designed to prevent its spread from the eastern US. Progress continues toward the development and testing of new bait-vaccine combinations that increase the chance for improved delivery and performance in the diverse meso-carnivore rabies reservoir complex in the US.
doi:10.1371/journal.pntd.0000549
PMCID: PMC2791170  PMID: 20027214
7.  Human Rabies and Rabies in Vampire and Nonvampire Bat Species, Southeastern Peru, 2007 
Emerging Infectious Diseases  2009;15(8):1308-1311.
After a human rabies outbreak in southeastern Peru, we collected bats to estimate the prevalence of rabies in various species. Among 165 bats from 6 genera and 10 species, 10.3% were antibody positive; antibody prevalence was similar in vampire and nonvampire bats. Thus, nonvampire bats may also be a source for human rabies in Peru.
doi:10.3201/eid1508.081522
PMCID: PMC2815962  PMID: 19751600
Rabies virus; rabies; viruses; outbreak investigation; reservoir; vampire bats; Peru; dispatch
8.  Detection of Novel SARS-like and Other Coronaviruses in Bats from Kenya 
Emerging Infectious Diseases  2009;15(3):482-485.
Diverse coronaviruses have been identified in bats from several continents but not from Africa. We identified group 1 and 2 coronaviruses in bats in Kenya, including SARS-related coronaviruses. The sequence diversity suggests that bats are well-established reservoirs for and likely sources of coronaviruses for many species, including humans.
doi:10.3201/eid1503.081013
PMCID: PMC2681120  PMID: 19239771
Coronavirus; SARS; bat viruses; pathogen discovery; emerging viral infections; dispatch
9.  Possible Emergence of West Caucasian Bat Virus in Africa 
Emerging Infectious Diseases  2008;14(12):1887-1889.
The prevalence of neutralizing antibody against West Caucasian bat virus (WCBV) in Miniopterus bats collected in Kenya ranged from 17% to 26%. Seropositive bats were detected in 4 of 5 locations sampled across the country. These findings provide evidence that WCBV, originally isolated in Europe, may emerge in other continents.
doi:10.3201/eid1412.080750
PMCID: PMC2634633  PMID: 19046512
West Caucasian bat virus, lyssavirus; bats, Miniopterus, seroprevalence, dispatch
10.  Identification of New Rabies Virus Variant in Mexican Immigrant 
Emerging Infectious Diseases  2008;14(12):1906-1908.
A novel rabies virus was identified after death in a man who had immigrated from Oaxaca, Mexico, to California, USA. Despite the patient’s history of exposure to domestic and wild carnivores, molecular and phylogenetic characterizations suggested that the virus originated from insectivorous bats. Enhanced surveillance is needed to elucidate likely reservoirs.
doi:10.3201/eid1412.080671
PMCID: PMC2634630  PMID: 19046517
rabies; rabies virus; lyssavirus; encephalitis; phylogenetics; emerging viral diseases; border surveillance; dispatch
11.  Oral vaccination of raccoons (Procyon lotor) with genetically modified rabies virus vaccines 
Vaccine  2007;25(42):7296-7300.
Oral vaccination is an important tool currently in use to control the spread of rabies in wildlife populations in various programs around the world. Oral rabies vaccination (ORV) of raccoons represents the largest targeted program to control wildlife rabies in the United States. Currently, the vaccinia-rabies glycoprotein recombinant virus vaccine (V-RG) is the only licensed oral rabies vaccine in the US. In the current study, captive raccoons were used to evaluate two previously described constructs of a rabies virus vaccine developed by reverse genetics (SPBNGAS and SPBNGAS-GAS) for immunogenicity and efficacy compared to the V-RG vaccine. Four of five control animals succumbed to rabies virus after severe challenge, while three of five animals vaccinated orally with SPBNGAS succumbed. No mortality was observed for animals administered SPBNGAS-GAS or the V-RG vaccine. The results of this preliminary study suggest that SPBNGAS-GAS provides comparable efficacy to V-RG. Additional studies will be needed to determine the duration of immunity and optimal dosage of SPBNGAS-GAS and to examine its efficacy in other reservoir species.
doi:10.1016/j.vaccine.2007.08.004
PMCID: PMC2094212  PMID: 17826874
Rabies; Vaccine; Raccoons; Oral
12.  Lagos Bat Virus in Kenya▿  
Journal of Clinical Microbiology  2008;46(4):1451-1461.
During lyssavirus surveillance, 1,221 bats of at least 30 species were collected from 25 locations in Kenya. One isolate of Lagos bat virus (LBV) was obtained from a dead Eidolon helvum fruit bat. The virus was most similar phylogenetically to LBV isolates from Senegal (1985) and from France (imported from Togo or Egypt; 1999), sharing with these viruses 100% nucleoprotein identity and 99.8 to 100% glycoprotein identity. This genome conservancy across space and time suggests that LBV is well adapted to its natural host species and that populations of reservoir hosts in eastern and western Africa have sufficient interactions to share pathogens. High virus concentrations, in addition to being detected in the brain, were detected in the salivary glands and tongue and in an oral swab, suggesting that LBV is transmitted in the saliva. In other extraneural organs, the virus was generally associated with innervations and ganglia. The presence of infectious virus in the reproductive tract and in a vaginal swab implies an alternative opportunity for transmission. The isolate was pathogenic for laboratory mice by the intracerebral and intramuscular routes. Serologic screening demonstrated the presence of LBV-neutralizing antibodies in E. helvum and Rousettus aegyptiacus fruit bats. In different colonies the seroprevalence ranged from 40 to 67% and 29 to 46% for E. helvum and R. aegyptiacus, respectively. Nested reverse transcription-PCR did not reveal the presence of viral RNA in oral swabs of bats in the absence of brain infection. Several large bat roosts were identified in areas of dense human populations, raising public health concerns for the potential of lyssavirus infection.
doi:10.1128/JCM.00016-08
PMCID: PMC2292963  PMID: 18305130
13.  Rabies Diagnosis for Developing Countries 
Background
Canine rabies is a neglected disease causing 55,000 human deaths worldwide per year, and 99% of all cases are transmitted by dog bites. In N'Djaména, the capital of Chad, rabies is endemic with an incidence of 1.71/1,000 dogs (95% C.I. 1.45–1.98). The gold standard of rabies diagnosis is the direct immunofluorescent antibody (DFA) test, requiring a fluorescent microscope. The Centers for Disease Control and Prevention (CDC, Atlanta, United States of America) developed a histochemical test using low-cost light microscopy, the direct rapid immunohistochemical test (dRIT).
Methodology/Principal Findings
We evaluated the dRIT in the Chadian National Veterinary Laboratory in N'Djaména by testing 35 fresh samples parallel with both the DFA and dRIT. Additional retests (n = 68 in Chad, n = 74 at CDC) by DFA and dRIT of stored samples enhanced the power of the evaluation. All samples were from dogs, cats, and in one case from a bat. The dRIT performed very well compared to DFA. We found a 100% agreement of the dRIT and DFA in fresh samples (n = 35). Results of retesting at CDC and in Chad depended on the condition of samples. When the sample was in good condition (fresh brain tissue), we found simple Cohen's kappa coefficient related to the DFA diagnostic results in fresh tissue of 0.87 (95% C.I. 0.63–1) up to 1. For poor quality samples, the kappa values were between 0.13 (95% C.I. −0.15–0.40) and 0.48 (95% C.I. 0.14–0.82). For samples stored in glycerol, dRIT results were more likely to agree with DFA testing in fresh samples than the DFA retesting.
Conclusion/Significance
The dRIT is as reliable a diagnostic method as the gold standard (DFA) for fresh samples. It has an advantage of requiring only light microscopy, which is 10 times less expensive than a fluorescence microscope. Reduced cost suggests high potential for making rabies diagnosis available in other cities and rural areas of Africa for large populations for which a capacity for diagnosis will contribute to rabies control.
Author Summary
A new diagnostic test for rabies in animals was evaluated in N'Djaména, capital of Chad. The test is based on a direct immuno-histochemical detection of rabies virus in brain tissue (dRIT) visible by normal light microscopy. Rabies detection by dRIT light microscopy is 10 times less expensive than fluorescence microscopy required for the current gold standard of rabies diagnosis. The test showed ideal results in fresh samples with 100% agreement with the gold standard and confirms the results of a first study in Tanzania. Thus, it has a significant potential for diagnosing rabies in low-income countries, and under field conditions where rabies diagnosis is unavailable for the moment. This new test opens up a great potential to train technical staff and to establish rabies diagnosis without delay in low-income countries with urban rabies.
doi:10.1371/journal.pntd.0000206
PMCID: PMC2268742  PMID: 18365035
14.  Lyssavirus Surveillance in Bats, Bangladesh 
Emerging Infectious Diseases  2006;12(3):486-488.
Lyssavirus surveillance in bats was performed in Bangladesh during 2003 and 2004. No virus isolates were obtained. Three serum samples (all from Pteropus giganteus, n = 127) of 288 total serum samples, obtained from bats in 9 different taxa, neutralized lyssaviruses Aravan and Khujand. The infection occurs in bats in Bangladesh, but virus prevalence appears low.
doi:10.3201/eid1203.050333
PMCID: PMC3291427  PMID: 16704789
lyssavirus; Khujand virus; Aravan virus; rabies; bat; rhabdovirus; Bangladesh; tropical Asia; antibody; dispatch
15.  Evaluation of a Direct, Rapid Immunohistochemical Test for Rabies Diagnosis 
Emerging Infectious Diseases  2006;12(2):310-313.
A direct rapid immunohistochemical test (dRIT) was evaluated under field and laboratory conditions to detect rabies virus antigen in frozen and glycerol-preserved field brain samples from northwestern Tanzania. Compared to the direct fluorescent antibody test, the traditional standard in rabies diagnosis, the dRIT was 100% sensitive and specific.
doi:10.3201/eid1202.050812
PMCID: PMC3294322  PMID: 16494761
rabies; diagnosis; immunohistochemistry; dispatch
16.  Novel Human Monoclonal Antibody Combination Effectively Neutralizing Natural Rabies Virus Variants and Individual In Vitro Escape Mutants 
Journal of Virology  2005;79(14):9062-9068.
The need to replace rabies immune globulin (RIG) as an essential component of rabies postexposure prophylaxis is widely acknowledged. We set out to discover a unique combination of human monoclonal antibodies (MAbs) able to replace RIG. Stringent criteria concerning neutralizing potency, affinity, breadth of neutralization, and coverage of natural rabies virus (RV) isolates and in vitro escape mutants were set for each individual antibody, and the complementarities of the two MAbs were defined at the onset. First, we identified and characterized one human MAb (CR57) with high in vitro and in vivo neutralizing potency and a broad neutralization spectrum. The linear antibody binding site was mapped on the RV glycoprotein as antigenic site I by characterizing CR57 escape mutants. Secondly, we selected using phage display a complementing antibody (CR4098) that recognized a distinct, nonoverlapping epitope (antigenic site III), showed similar neutralizing potency and breadth as CR57, and neutralized CR57 escape mutants. Reciprocally, CR57 neutralized RV variants escaping CR4098. Analysis of glycoprotein sequences of natural RV isolates revealed that the majority of strains contain both intact epitopes, and the few remaining strains contain at least one of the two. In vitro exposure of RV to the combination of CR57 and CR4098 yielded no escape mutants. In conclusion, a novel combination of human MAbs was discovered suitable to replace RIG.
doi:10.1128/JVI.79.14.9062-9068.2005
PMCID: PMC1168753  PMID: 15994800
17.  Novel Rabies Virus-Neutralizing Epitope Recognized by Human Monoclonal Antibody: Fine Mapping and Escape Mutant Analysis†  
Journal of Virology  2005;79(8):4672-4678.
Anti-rabies virus immunoglobulin combined with rabies vaccine protects humans from lethal rabies infections. For cost and safety reasons, replacement of the human or equine polyclonal immunoglobulin is advocated, and the use of rabies virus-specific monoclonal antibodies (MAbs) is recommended. We produced two previously described potent rabies virus-neutralizing human MAbs, CR57 and CRJB, in human PER.C6 cells. The two MAbs competed for binding to rabies virus glycoprotein. Using CR57 and a set of 15-mer overlapping peptides covering the glycoprotein ectodomain, a neutralization domain was identified between amino acids (aa) 218 and 240. The minimal binding region was identified as KLCGVL (aa 226 to 231), with key residues K-CGV- identified by alanine replacement scanning. The critical binding region of this novel nonconformational rabies virus epitope is highly conserved within rabies viruses of genotype 1. Subsequently, we generated six rabies virus variants escaping neutralization by CR57 and six variants escaping CRJB. The CR57 escape mutants were only partially covered by CRJB, and all CRJB-resistant variants completely escaped neutralization by CR57. Without exception, the CR57-resistant variants showed a mutation at key residues within the defined minimal binding region, while the CRJB escape viruses showed a single mutation distant from the CR57 epitope (N182D) combined with mutations in the CR57 epitope. The competition between CR57 and CRJB, the in vitro escape profile, and the apparent overlap between the recognized epitopes argues against including both CR57 and CRJB in a MAb cocktail aimed at replacing classical immunoglobulin preparations.
doi:10.1128/JVI.79.8.4672-4678.2005
PMCID: PMC1069557  PMID: 15795253
18.  Nipah Virus Encephalitis Reemergence, Bangladesh 
Emerging Infectious Diseases  2004;10(12):2082-2087.
Two Nipah virus encephalitis outbreaks in Bangladesh may be associated with person-to-person transmission.
We retrospectively investigated two outbreaks of encephalitis in Meherpur and Naogaon, Bangladesh, which occurred in 2001 and 2003. We collected serum samples from persons who were ill, their household contacts, randomly selected residents, hospital workers, and various animals. Cases were classified as laboratory confirmed or probable. We identified 13 cases (4 confirmed, 9 probable) in Meherpur; 7 were in persons in two households. Patients were more likely than nonpatients to have close contact with other patients or have contact with a sick cow. In Naogaon, we identified 12 cases (4 confirmed, 8 probable); 7 were in persons clustered in 2 households. Two Pteropus bats had antibodies for Nipah virus. Samples from hospital workers were negative for Nipah virus antibodies. These outbreaks, the first since 1999, suggest that transmission may occur through close contact with other patients or from exposure to a common source. Surveillance and enhancement of diagnostic capacity to detect Nipah virus infection are recommended.
doi:10.3201/eid1012.040701
PMCID: PMC3323384  PMID: 15663842
19.  Antibodies to Nipah-Like Virus in Bats (Pteropus lylei), Cambodia 
Emerging Infectious Diseases  2002;8(9):987-988.
Serum specimens from fruit bats were obtained at restaurants in Cambodia. We detected antibodies cross-reactive to Nipah virus by enzyme immunoassay in 11 (11.5%) of 96 Lyle’s flying foxes (Pteropus lylei). Our study suggests that viruses closely related to Nipah or Hendra viruses are more widespread in Southeast Asia than previously documented.
doi:10.3201/eid0809.010515
PMCID: PMC2732552  PMID: 12194780
Pteropus; bats; antibodies; Nipah virus; Cambodia

Results 1-19 (19)