PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-16 (16)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Expression quantitative trait loci: present and future 
The last few years have seen the development of large efforts for the analysis of genome function, especially in the context of genome variation. One of the most prominent directions has been the extensive set of studies on expression quantitative trait loci (eQTLs), namely, the discovery of genetic variants that explain variation in gene expression levels. Such studies have offered promise not just for the characterization of functional sequence variation but also for the understanding of basic processes of gene regulation and interpretation of genome-wide association studies. In this review, we discuss some of the key directions of eQTL research and its implications.
doi:10.1098/rstb.2012.0362
PMCID: PMC3682727  PMID: 23650636
expression quantitative trait loci; regulation; genetics
2.  Mapping cis- and trans-regulatory effects across multiple tissues in twins 
Nature genetics  2012;44(10):1084-1089.
Sequence-based variation in gene expression is a key driver of disease risk. Common variants regulating expression in cis have been mapped in many eQTL studies typically in single tissues from unrelated individuals. Here, we present a comprehensive analysis of gene expression across multiple tissues conducted in a large set of mono- and dizygotic twins that allows systematic dissection of genetic (cis and trans) and non-genetic effects on gene expression. Using identity-by-descent estimates, we show that at least 40% of the total heritable cis-effect on expression cannot be accounted for by common cis-variants, a finding which exposes the contribution of low frequency and rare regulatory variants with respect to both transcriptional regulation and complex trait susceptibility. We show that a substantial proportion of gene expression heritability is trans to the structural gene and identify several replicating trans-variants which act predominantly in a tissue-restricted manner and may regulate the transcription of many genes.
doi:10.1038/ng.2394
PMCID: PMC3784328  PMID: 22941192
3.  Genome-wide association study in people of South Asian ancestry identifies six novel susceptibility loci for type 2 diabetes 
Nature genetics  2011;43(10):984-989.
We carried out a genome wide association study of type-2 diabetes (T2D) amongst 20,119 people of South Asian ancestry (5,561 with T2D); we identified 20 independent SNPs associated with T2D at P<10−4 for testing amongst a further 38,568 South Asians (13,170 with T2D). In combined analysis, common genetic variants at six novel loci (GRB14, ST6GAL1, VPS26A, HMG20A, AP3S2 and HNF4A) were associated with T2D (P=4.1×10−8 to P=1.9×10−11); SNPs at GRB14 were also associated with insulin sensitivity, and at ST6GAL1 and HNF4A with pancreatic beta-cell function respectively. Our findings provide additional insight into mechanisms underlying T2D, and demonstrate the potential for new discovery from genetic association studies in South Asians who have increased susceptibility to T2D.
doi:10.1038/ng.921
PMCID: PMC3773920  PMID: 21874001
4.  Gene expression changes with age in skin, adipose tissue, blood and brain 
Genome Biology  2013;14(7):R75.
Background
Previous studies have demonstrated that gene expression levels change with age. These changes are hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of 39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to understand how the genomic regulation of gene expression alters with age.
Results
Using a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188 genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100 postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues. There were 12 genes that showed differential expression with age in both skin and brain tissue and three common to adipose and brain tissues.
Conclusions
Skin showed the most age-related gene expression changes of all the tissues investigated, with many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a few genes sharing an age effect in expression across tissues. More research is needed to improve our understanding of the genetic influences on aging and the relationship with age-related diseases.
doi:10.1186/gb-2013-14-7-r75
PMCID: PMC4054017  PMID: 23889843
Aging; gene expression; skin; adipose; brain; microarrays
5.  Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes 
Strawbridge, Rona J. | Dupuis, Josée | Prokopenko, Inga | Barker, Adam | Ahlqvist, Emma | Rybin, Denis | Petrie, John R. | Travers, Mary E. | Bouatia-Naji, Nabila | Dimas, Antigone S. | Nica, Alexandra | Wheeler, Eleanor | Chen, Han | Voight, Benjamin F. | Taneera, Jalal | Kanoni, Stavroula | Peden, John F. | Turrini, Fabiola | Gustafsson, Stefan | Zabena, Carina | Almgren, Peter | Barker, David J.P. | Barnes, Daniel | Dennison, Elaine M. | Eriksson, Johan G. | Eriksson, Per | Eury, Elodie | Folkersen, Lasse | Fox, Caroline S. | Frayling, Timothy M. | Goel, Anuj | Gu, Harvest F. | Horikoshi, Momoko | Isomaa, Bo | Jackson, Anne U. | Jameson, Karen A. | Kajantie, Eero | Kerr-Conte, Julie | Kuulasmaa, Teemu | Kuusisto, Johanna | Loos, Ruth J.F. | Luan, Jian'an | Makrilakis, Konstantinos | Manning, Alisa K. | Martínez-Larrad, María Teresa | Narisu, Narisu | Nastase Mannila, Maria | Öhrvik, John | Osmond, Clive | Pascoe, Laura | Payne, Felicity | Sayer, Avan A. | Sennblad, Bengt | Silveira, Angela | Stančáková, Alena | Stirrups, Kathy | Swift, Amy J. | Syvänen, Ann-Christine | Tuomi, Tiinamaija | van 't Hooft, Ferdinand M. | Walker, Mark | Weedon, Michael N. | Xie, Weijia | Zethelius, Björn | Ongen, Halit | Mälarstig, Anders | Hopewell, Jemma C. | Saleheen, Danish | Chambers, John | Parish, Sarah | Danesh, John | Kooner, Jaspal | Östenson, Claes-Göran | Lind, Lars | Cooper, Cyrus C. | Serrano-Ríos, Manuel | Ferrannini, Ele | Forsen, Tom J. | Clarke, Robert | Franzosi, Maria Grazia | Seedorf, Udo | Watkins, Hugh | Froguel, Philippe | Johnson, Paul | Deloukas, Panos | Collins, Francis S. | Laakso, Markku | Dermitzakis, Emmanouil T. | Boehnke, Michael | McCarthy, Mark I. | Wareham, Nicholas J. | Groop, Leif | Pattou, François | Gloyn, Anna L. | Dedoussis, George V. | Lyssenko, Valeriya | Meigs, James B. | Barroso, Inês | Watanabe, Richard M. | Ingelsson, Erik | Langenberg, Claudia | Hamsten, Anders | Florez, Jose C.
Diabetes  2011;60(10):2624-2634.
OBJECTIVE
Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology.
RESEARCH DESIGN AND METHODS
We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates.
RESULTS
Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10−8). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10−4), improved β-cell function (P = 1.1 × 10−5), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10−6). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets.
CONCLUSIONS
We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis.
doi:10.2337/db11-0415
PMCID: PMC3178302  PMID: 21873549
6.  Extent, Causes, and Consequences of Small RNA Expression Variation in Human Adipose Tissue 
PLoS Genetics  2012;8(5):e1002704.
Small RNAs are functional molecules that modulate mRNA transcripts and have been implicated in the aetiology of several common diseases. However, little is known about the extent of their variability within the human population. Here, we characterise the extent, causes, and effects of naturally occurring variation in expression and sequence of small RNAs from adipose tissue in relation to genotype, gene expression, and metabolic traits in the MuTHER reference cohort. We profiled the expression of 15 to 30 base pair RNA molecules in subcutaneous adipose tissue from 131 individuals using high-throughput sequencing, and quantified levels of 591 microRNAs and small nucleolar RNAs. We identified three genetic variants and three RNA editing events. Highly expressed small RNAs are more conserved within mammals than average, as are those with highly variable expression. We identified 14 genetic loci significantly associated with nearby small RNA expression levels, seven of which also regulate an mRNA transcript level in the same region. In addition, these loci are enriched for variants significant in genome-wide association studies for body mass index. Contrary to expectation, we found no evidence for negative correlation between expression level of a microRNA and its target mRNAs. Trunk fat mass, body mass index, and fasting insulin were associated with more than twenty small RNA expression levels each, while fasting glucose had no significant associations. This study highlights the similar genetic complexity and shared genetic control of small RNA and mRNA transcripts, and gives a quantitative picture of small RNA expression variation in the human population.
Author Summary
Genetic information is transmitted to the cell only through RNA molecules. A special class of RNAs is comprised of the small (up to 30 nucleotide) ones, known to be potent regulators of various cellular processes. At the same time, they have not been as widely studied as messenger RNAs—we do not know how much variation in their sequence and expression level occurs naturally in human populations or how this variability influences other traits. We measured small RNA levels and genetic variability in fat tissue from 131 individuals by high-throughput sequencing. We could associate the expression levels with genetic background of the individuals, as well as changes in metabolic traits. Surprisingly, we found no large scale influence of small RNA variation on mRNA levels, their main regulatory target. Overall, our study is the first to give a quantitative picture of the naturally occurring variation in these important regulatory molecules in human fat tissue.
doi:10.1371/journal.pgen.1002704
PMCID: PMC3349731  PMID: 22589741
7.  Patterns of Cis Regulatory Variation in Diverse Human Populations 
PLoS Genetics  2012;8(4):e1002639.
The genetic basis of gene expression variation has long been studied with the aim to understand the landscape of regulatory variants, but also more recently to assist in the interpretation and elucidation of disease signals. To date, many studies have looked in specific tissues and population-based samples, but there has been limited assessment of the degree of inter-population variability in regulatory variation. We analyzed genome-wide gene expression in lymphoblastoid cell lines from a total of 726 individuals from 8 global populations from the HapMap3 project and correlated gene expression levels with HapMap3 SNPs located in cis to the genes. We describe the influence of ancestry on gene expression levels within and between these diverse human populations and uncover a non-negligible impact on global patterns of gene expression. We further dissect the specific functional pathways differentiated between populations. We also identify 5,691 expression quantitative trait loci (eQTLs) after controlling for both non-genetic factors and population admixture and observe that half of the cis-eQTLs are replicated in one or more of the populations. We highlight patterns of eQTL-sharing between populations, which are partially determined by population genetic relatedness, and discover significant sharing of eQTL effects between Asians, European-admixed, and African subpopulations. Specifically, we observe that both the effect size and the direction of effect for eQTLs are highly conserved across populations. We observe an increasing proximity of eQTLs toward the transcription start site as sharing of eQTLs among populations increases, highlighting that variants close to TSS have stronger effects and therefore are more likely to be detected across a wider panel of populations. Together these results offer a unique picture and resource of the degree of differentiation among human populations in functional regulatory variation and provide an estimate for the transferability of complex trait variants across populations.
Author Summary
Variation among individuals in the degree to which genes are expressed (i.e. turned on or off) is a characteristic exhibited by all species, and studies have identified regions of the genome harboring genetic variation affecting gene expression levels. To assess the degree of human inter-population variability in regulatory variation, we describe mapping of regions of the genome that have functional effects on gene expression levels. We analyzed genome-wide gene expression in human cell lines derived from 726 unrelated individuals representing 8 global populations that have been genetically well-characterized by the International HapMap Project. We describe the influence of ancestry on gene expression levels within and between these diverse human populations and uncover a non-negligible impact on global patterns of gene expression. We identify ∼5,700 genes whose expression levels are associated with genetic variation located physically close to the gene, and we observe significant sharing of associations that is partially dependent on population genetic relatedness, among Asians, European-admixed, and African subpopulations. We identify biological functions affected by regulatory variation and describe common and unique characteristics of population-specific and population-shared associations. These results offer a unique picture and resource of the degree of differentiation among human populations in functional regulatory variation.
doi:10.1371/journal.pgen.1002639
PMCID: PMC3330104  PMID: 22532805
8.  Epigenome-Wide Scans Identify Differentially Methylated Regions for Age and Age-Related Phenotypes in a Healthy Ageing Population 
PLoS Genetics  2012;8(4):e1002629.
Age-related changes in DNA methylation have been implicated in cellular senescence and longevity, yet the causes and functional consequences of these variants remain unclear. To elucidate the role of age-related epigenetic changes in healthy ageing and potential longevity, we tested for association between whole-blood DNA methylation patterns in 172 female twins aged 32 to 80 with age and age-related phenotypes. Twin-based DNA methylation levels at 26,690 CpG-sites showed evidence for mean genome-wide heritability of 18%, which was supported by the identification of 1,537 CpG-sites with methylation QTLs in cis at FDR 5%. We performed genome-wide analyses to discover differentially methylated regions (DMRs) for sixteen age-related phenotypes (ap-DMRs) and chronological age (a-DMRs). Epigenome-wide association scans (EWAS) identified age-related phenotype DMRs (ap-DMRs) associated with LDL (STAT5A), lung function (WT1), and maternal longevity (ARL4A, TBX20). In contrast, EWAS for chronological age identified hundreds of predominantly hyper-methylated age DMRs (490 a-DMRs at FDR 5%), of which only one (TBX20) was also associated with an age-related phenotype. Therefore, the majority of age-related changes in DNA methylation are not associated with phenotypic measures of healthy ageing in later life. We replicated a large proportion of a-DMRs in a sample of 44 younger adult MZ twins aged 20 to 61, suggesting that a-DMRs may initiate at an earlier age. We next explored potential genetic and environmental mechanisms underlying a-DMRs and ap-DMRs. Genome-wide overlap across cis-meQTLs, genotype-phenotype associations, and EWAS ap-DMRs identified CpG-sites that had cis-meQTLs with evidence for genotype–phenotype association, where the CpG-site was also an ap-DMR for the same phenotype. Monozygotic twin methylation difference analyses identified one potential environmentally-mediated ap-DMR associated with total cholesterol and LDL (CSMD1). Our results suggest that in a small set of genes DNA methylation may be a candidate mechanism of mediating not only environmental, but also genetic effects on age-related phenotypes.
Author Summary
Epigenetic patterns vary during healthy ageing and development. Age-related DNA methylation changes have been implicated in cellular senescence and longevity, yet the causes and functional consequences of these variants remain unclear. To understand the biological mechanisms involved in potential longevity and rate of healthy ageing, we performed genome-wide association of epigenetic and genetic variation with both chronological age and age-related phenotypes. We identified hundreds of DNA methylation variants significantly associated with age and replicated these in an independent sample of young adult twins. Only a small proportion of these variants were also associated with age-related phenotypes. Therefore, the majority of age-related epigenetic changes do not contribute to rate of healthy ageing at later stages in life. Our results suggest that age-related changes in methylation occur throughout an individual's lifespan and that a proportion of these may be initiated from an early age. Intriguingly, a fraction of the age differentially methylated regions also associated with genetic variants in our sample, suggesting that DNA methylation may be a candidate mechanism of mediating not only environmental but also genetic effects on age-related phenotypes.
doi:10.1371/journal.pgen.1002629
PMCID: PMC3330116  PMID: 22532803
9.  Identification of an imprinted master trans-regulator at the KLF14 locus related to multiple metabolic phenotypes 
Nature genetics  2011;43(6):561-564.
Genome-wide association studies have identified many genetic variants associated with complex traits. However, at only a minority of loci have the molecular mechanisms mediating these associations been characterized. In parallel, whilst cis-regulatory patterns of gene expression have been extensively explored, the identification of trans-regulatory effects in humans has attracted less attention. We demonstrate that the Type 2 diabetes and HDL-cholesterol associated cis-acting eQTL of the maternally-expressed transcription factor KLF14 acts as a master trans-regulator of adipose gene expression. Expression levels of genes regulated by this trans-eQTL are highly-correlated with concurrently-measured metabolic traits, and a subset of the trans-genes harbor variants directly-associated with metabolic phenotypes. This trans-eQTL network provides a mechanistic understanding of the effect of the KLF14 locus on metabolic disease risk, providing a potential model for other complex traits.
doi:10.1038/ng.833
PMCID: PMC3192952  PMID: 21572415
10.  Eight Common Genetic Variants Associated with Serum DHEAS Levels Suggest a Key Role in Ageing Mechanisms 
PLoS Genetics  2011;7(4):e1002025.
Dehydroepiandrosterone sulphate (DHEAS) is the most abundant circulating steroid secreted by adrenal glands—yet its function is unknown. Its serum concentration declines significantly with increasing age, which has led to speculation that a relative DHEAS deficiency may contribute to the development of common age-related diseases or diminished longevity. We conducted a meta-analysis of genome-wide association data with 14,846 individuals and identified eight independent common SNPs associated with serum DHEAS concentrations. Genes at or near the identified loci include ZKSCAN5 (rs11761528; p = 3.15×10−36), SULT2A1 (rs2637125; p = 2.61×10−19), ARPC1A (rs740160; p = 1.56×10−16), TRIM4 (rs17277546; p = 4.50×10−11), BMF (rs7181230; p = 5.44×10−11), HHEX (rs2497306; p = 4.64×10−9), BCL2L11 (rs6738028; p = 1.72×10−8), and CYP2C9 (rs2185570; p = 2.29×10−8). These genes are associated with type 2 diabetes, lymphoma, actin filament assembly, drug and xenobiotic metabolism, and zinc finger proteins. Several SNPs were associated with changes in gene expression levels, and the related genes are connected to biological pathways linking DHEAS with ageing. This study provides much needed insight into the function of DHEAS.
Author Summary
Dehydroepiandrosterone sulphate (DHEAS), mainly secreted by the adrenal gland, is the most abundant circulating steroid in humans. It shows a significant physiological decline after the age of 25 and diminishes about 95% by the age of 85 years, which has led to speculation that a relative DHEAS deficiency may contribute to the development of common age-related diseases or diminished longevity. Twin- and family-based studies have shown that there is a substantial genetic effect with heritability estimate of 60%, but no specific genes regulating serum DHEAS concentration have been identified to date. Here we take advantage of recent technical and methodological advances to examine the effects of common genetic variants on serum DHEAS concentrations. By examining 14,846 Caucasian individuals, we show that eight common genetic variants are associated with serum DHEAS concentrations. Genes at or near these genetic variants include BCL2L11, ARPC1A, ZKSCAN5, TRIM4, HHEX, CYP2C9, BMF, and SULT2A1. These genes have various associations with steroid hormone metabolism—co-morbidities of ageing including type 2 diabetes, lymphoma, actin filament assembly, drug and xenobiotic metabolism, and zinc finger proteins—suggesting a wider functional role for DHEAS than previously thought.
doi:10.1371/journal.pgen.1002025
PMCID: PMC3077384  PMID: 21533175
11.  The Architecture of Gene Regulatory Variation across Multiple Human Tissues: The MuTHER Study 
PLoS Genetics  2011;7(2):e1002003.
While there have been studies exploring regulatory variation in one or more tissues, the complexity of tissue-specificity in multiple primary tissues is not yet well understood. We explore in depth the role of cis-regulatory variation in three human tissues: lymphoblastoid cell lines (LCL), skin, and fat. The samples (156 LCL, 160 skin, 166 fat) were derived simultaneously from a subset of well-phenotyped healthy female twins of the MuTHER resource. We discover an abundance of cis-eQTLs in each tissue similar to previous estimates (858 or 4.7% of genes). In addition, we apply factor analysis (FA) to remove effects of latent variables, thus more than doubling the number of our discoveries (1,822 eQTL genes). The unique study design (Matched Co-Twin Analysis—MCTA) permits immediate replication of eQTLs using co-twins (93%–98%) and validation of the considerable gain in eQTL discovery after FA correction. We highlight the challenges of comparing eQTLs between tissues. After verifying previous significance threshold-based estimates of tissue-specificity, we show their limitations given their dependency on statistical power. We propose that continuous estimates of the proportion of tissue-shared signals and direct comparison of the magnitude of effect on the fold change in expression are essential properties that jointly provide a biologically realistic view of tissue-specificity. Under this framework we demonstrate that 30% of eQTLs are shared among the three tissues studied, while another 29% appear exclusively tissue-specific. However, even among the shared eQTLs, a substantial proportion (10%–20%) have significant differences in the magnitude of fold change between genotypic classes across tissues. Our results underline the need to account for the complexity of eQTL tissue-specificity in an effort to assess consequences of such variants for complex traits.
Author Summary
Regulation of gene expression is a fundamental cellular process determining a large proportion of the phenotypic variance. Previous studies have identified genetic loci influencing gene expression levels (eQTLs), but the complexity of their tissue-specific properties has not yet been well-characterized. In this study, we perform cis-eQTL analysis in a unique matched co-twin design for three human tissues derived simultaneously from the same set of individuals. The study design allows validation of the substantial discoveries we make in each tissue. We explore in depth the tissue-dependent features of regulatory variants and estimate the proportions of shared and specific effects. We use continuous measures of eQTL sharing to circumvent the statistical power limitations of comparing direct overlap of eQTLs in multiple tissues. In this framework, we demonstrate that 30% of eQTLs are shared among tissues, while 29% are exclusively tissue-specific. Furthermore, we show that the fold change in expression between eQTL genotypic classes differs between tissues. Even among shared eQTLs, we report a substantial proportion (10%–20%) of significant tissue differences in magnitude of these effects. The complexities we highlight here are essential for understanding the impact of regulatory variants on complex traits.
doi:10.1371/journal.pgen.1002003
PMCID: PMC3033383  PMID: 21304890
12.  Candidate Causal Regulatory Effects by Integration of Expression QTLs with Complex Trait Genetic Associations 
PLoS Genetics  2010;6(4):e1000895.
The recent success of genome-wide association studies (GWAS) is now followed by the challenge to determine how the reported susceptibility variants mediate complex traits and diseases. Expression quantitative trait loci (eQTLs) have been implicated in disease associations through overlaps between eQTLs and GWAS signals. However, the abundance of eQTLs and the strong correlation structure (LD) in the genome make it likely that some of these overlaps are coincidental and not driven by the same functional variants. In the present study, we propose an empirical methodology, which we call Regulatory Trait Concordance (RTC) that accounts for local LD structure and integrates eQTLs and GWAS results in order to reveal the subset of association signals that are due to cis eQTLs. We simulate genomic regions of various LD patterns with both a single or two causal variants and show that our score outperforms SNP correlation metrics, be they statistical (r2) or historical (D'). Following the observation of a significant abundance of regulatory signals among currently published GWAS loci, we apply our method with the goal to prioritize relevant genes for each of the respective complex traits. We detect several potential disease-causing regulatory effects, with a strong enrichment for immunity-related conditions, consistent with the nature of the cell line tested (LCLs). Furthermore, we present an extension of the method in trans, where interrogating the whole genome for downstream effects of the disease variant can be informative regarding its unknown primary biological effect. We conclude that integrating cellular phenotype associations with organismal complex traits will facilitate the biological interpretation of the genetic effects on these traits.
Author Summary
Genome-wide association studies have led to the identification of susceptibility loci for a variety of human complex traits. What is still largely missing, however, is the understanding of the biological context in which these candidate variants act and of how they determine each trait. Given the localization of many GWAS loci outside coding regions and the important role of regulatory variation in shaping phenotypic variance, gene expression has been proposed as a plausible informative intermediate phenotype. Here we show that for a subset of the currently published GWAS this is indeed the case, by observing a significant excess of regulatory variants among disease loci. We propose an empirical methodology (regulatory trait concordance—RTC) able to integrate expression and disease data in order to detect causal regulatory effects. We show that the RTC outperforms simple correlation metrics under various simulated linkage disequilibrium (LD) scenarios. Our method is able to recover previously suspected causal regulatory effects from the literature and, as expected given the nature of the tested tissue, an overrepresentation of immunity-related candidates is observed. As the number of available tissues will increase, this prioritization approach will become even more useful in understanding the implication of regulatory variants in disease etiology.
doi:10.1371/journal.pgen.1000895
PMCID: PMC2848550  PMID: 20369022
13.  Using gene expression to investigate the genetic basis of complex disorders 
Human Molecular Genetics  2008;17(R2):R129-R134.
The identification of complex disease susceptibility loci through genome-wide association studies (GWAS) has recently become possible and is now a method of choice for investigating the genetic basis of complex traits. The number of results from such studies is constantly increasing but the challenge lying forward is to identify the biological context in which these statistically significant candidate variants act. Regulatory variation plays an important role in shaping phenotypic differences among individuals and thus is very likely to also influence disease susceptibility. As such, integrating gene expression data and other disease relevant intermediate phenotypes with GWAS results could potentially help prioritize fine-mapping efforts and provide a shortcut to disease biology. Combining these different levels of information in a meaningful way is however not trivial. In the present review, we outline the several approaches that have been explored so far in this sense and their achievements. We also discuss the limitations of the methods and how upcoming technological developments could help circumvent these limitations. Overall, such efforts will be very helpful in understanding initially regulatory effects on disease and disease etiology in general.
doi:10.1093/hmg/ddn285
PMCID: PMC2570059  PMID: 18852201
14.  USING GENE EXPRESSION TO INVESTIGATE THE GENETIC BASIS OF COMPLEX DISORDERS 
Human molecular genetics  2008;17(R2):R129-R134.
The identification of complex disease susceptibility loci through genome-wide association studies (GWAS) has recently become possible and is now a method of choice for investigating the genetic basis of complex traits. The number of results from such studies is constantly increasing but the challenge lying forward is to identify the biological context in which these statistically significant candidate variants act. Regulatory variation plays an important role in shaping phenotypic differences among individuals and thus is very likely to also influence disease susceptibility. As such, integrating gene expression data and other disease relevant intermediate phenotypes with GWAS results could potentially help prioritize fine-mapping efforts and provide a shortcut to disease biology. Combining these different levels of information in a meaningful way is however not trivial. In the present review we outline the several approaches that have been explored so far in this sense and their achievements. We also discuss the limitations of the methods and how upcoming technological developments could help circumvent these limitations. Overall, such efforts will be very helpful in understanding initially regulatory effects on disease and disease etiology in general.
doi:10.1093/hmg/ddn285
PMCID: PMC2570059  PMID: 18852201
15.  Population genomics of human gene expression 
Nature genetics  2007;39(10):1217-1224.
Genetic variation influences gene expression, and this can be efficiently mapped to specific genomic regions and variants. We used gene expression profiling of EBV-transformed lymphoblastoid cell lines of all 270 individuals of the HapMap consortium to elucidate the detailed features of genetic variation underlying gene expression variation. We find gene expression levels to be heritable and differentiation between populations in agreement with earlier small-scale studies. A detailed association analysis of over 2.2 million common SNPs per population (5% frequency HapMap) with gene expression identified at least 1348 genes with association signals in cis and at least 180 in trans. Replication in at least one independent population was achieved for 37% of cis- signals and 15% of trans- signals, respectively. Our results strongly support an abundance of cis- regulatory variation in the human genome. Detection of trans- effects is limited but suggests that regulatory variation may be the key primary effect contributing to phenotypic variation in humans. Finally, we explore a variety of methodologies that improve the current state of analysis of gene expression variation.
doi:10.1038/ng2142
PMCID: PMC2683249  PMID: 17873874
16.  Meta-Analysis of Genome-Wide Scans for Human Adult Stature Identifies Novel Loci and Associations with Measures of Skeletal Frame Size 
PLoS Genetics  2009;5(4):e1000445.
Recent genome-wide (GW) scans have identified several independent loci affecting human stature, but their contribution through the different skeletal components of height is still poorly understood. We carried out a genome-wide scan in 12,611 participants, followed by replication in an additional 7,187 individuals, and identified 17 genomic regions with GW-significant association with height. Of these, two are entirely novel (rs11809207 in CATSPER4, combined P-value = 6.1×10−8 and rs910316 in TMED10, P-value = 1.4×10−7) and two had previously been described with weak statistical support (rs10472828 in NPR3, P-value = 3×10−7 and rs849141 in JAZF1, P-value = 3.2×10−11). One locus (rs1182188 at GNA12) identifies the first height eQTL. We also assessed the contribution of height loci to the upper- (trunk) and lower-body (hip axis and femur) skeletal components of height. We find evidence for several loci associated with trunk length (including rs6570507 in GPR126, P-value = 4×10−5 and rs6817306 in LCORL, P-value = 4×10−4), hip axis length (including rs6830062 at LCORL, P-value = 4.8×10−4 and rs4911494 at UQCC, P-value = 1.9×10−4), and femur length (including rs710841 at PRKG2, P-value = 2.4×10−5 and rs10946808 at HIST1H1D, P-value = 6.4×10−6). Finally, we used conditional analyses to explore a possible differential contribution of the height loci to these different skeletal size measurements. In addition to validating four novel loci controlling adult stature, our study represents the first effort to assess the contribution of genetic loci to three skeletal components of height. Further statistical tests in larger numbers of individuals will be required to verify if the height loci affect height preferentially through these subcomponents of height.
Author Summary
The first genetic association studies of adult height have confirmed a role of many common variants in influencing human height, but to date, the genetic basis of differences between different skeletal components of height have not been addressed. Here, we take advantage of recent technical and methodological advances to examine the role of common genetic variants on both height and skeletal components of height. By examining nearly 20,000 individuals from the UK and the Netherlands, we provide statistically significant evidence that 17 genomic regions are associated with height, including four novel regions. We also examine, for the first time, the association of these 17 regions with skeletal size measurements of spine, femur, and hip axis length, a measurement of hip geometry known to influence the risk of osteoporotic fractures. We find that some height loci are also associated with these skeletal components, although further statistical tests will be required to verify if these genetic variants act differentially on the individual skeletal measurements. The knowledge generated by this and other studies will not only inform the genetics of human quantitative variation, but will also lead to the potential discovery of many medically important polymorphisms.
doi:10.1371/journal.pgen.1000445
PMCID: PMC2661236  PMID: 19343178

Results 1-16 (16)