PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Molecular Characterization of Ambiguous Mutations in HIV-1 Polymerase Gene: Implications for Monitoring HIV Infection Status and Drug Resistance 
PLoS ONE  2013;8(10):e77649.
Detection of recent HIV infections is a prerequisite for reliable estimations of transmitted HIV drug resistance (t-HIVDR) and incidence. However, accurately identifying recent HIV infection is challenging due partially to the limitations of current serological tests. Ambiguous nucleotides are newly emerged mutations in quasispecies, and accumulate by time of viral infection. We utilized ambiguous mutations to establish a measurement for detecting recent HIV infection and monitoring early HIVDR development. Ambiguous nucleotides were extracted from HIV-1 pol-gene sequences in the datasets of recent (HIVDR threshold surveys [HIVDR-TS] in 7 countries; n=416) and established infections (1 HIVDR monitoring survey at baseline; n=271). An ambiguous mutation index of 2.04×10-3 nts/site was detected in HIV-1 recent infections which is equivalent to the HIV-1 substitution rate (2×10-3 nts/site/year) reported before. However, significantly higher index (14.41×10-3 nts/site) was revealed with established infections. Using this substitution rate, 75.2% subjects in HIVDR-TS with the exception of the Vietnam dataset and 3.3% those in HIVDR-baseline were classified as recent infection within one year. We also calculated mutation scores at amino acid level at HIVDR sites based on ambiguous or fitted mutations. The overall mutation scores caused by ambiguous mutations increased (0.54×10-23.48×10-2/DR-site) whereas those caused by fitted mutations remained stable (7.50-7.89×10-2/DR-site) in both recent and established infections, indicating that t-HIVDR exists in drug-naïve populations regardless of infection status in which new HIVDR continues to emerge. Our findings suggest that characterization of ambiguous mutations in HIV may serve as an additional tool to differentiate recent from established infections and to monitor HIVDR emergence.
doi:10.1371/journal.pone.0077649
PMCID: PMC3798419  PMID: 24147046
2.  Optimization of a Low Cost and Broadly Sensitive Genotyping Assay for HIV-1 Drug Resistance Surveillance and Monitoring in Resource-Limited Settings 
PLoS ONE  2011;6(11):e28184.
Commercially available HIV-1 drug resistance (HIVDR) genotyping assays are expensive and have limitations in detecting non-B subtypes and circulating recombinant forms that are co-circulating in resource-limited settings (RLS). This study aimed to optimize a low cost and broadly sensitive in-house assay in detecting HIVDR mutations in the protease (PR) and reverse transcriptase (RT) regions of pol gene. The overall plasma genotyping sensitivity was 95.8% (N = 96). Compared to the original in-house assay and two commercially available genotyping systems, TRUGENE® and ViroSeq®, the optimized in-house assay showed a nucleotide sequence concordance of 99.3%, 99.6% and 99.1%, respectively. The optimized in-house assay was more sensitive in detecting mixture bases than the original in-house (N = 87, P<0.001) and TRUGENE® and ViroSeq® assays. When the optimized in-house assay was applied to genotype samples collected for HIVDR surveys (N = 230), all 72 (100%) plasma and 69 (95.8%) of the matched dried blood spots (DBS) in the Vietnam transmitted HIVDR survey were genotyped and nucleotide sequence concordance was 98.8%; Testing of treatment-experienced patient plasmas with viral load (VL) ≥ and <3 log10 copies/ml from the Nigeria and Malawi surveys yielded 100% (N = 46) and 78.6% (N = 14) genotyping rates, respectively. Furthermore, all 18 matched DBS stored at room temperature from the Nigeria survey were genotyped. Phylogenetic analysis of the 236 sequences revealed that 43.6% were CRF01_AE, 25.9% subtype C, 13.1% CRF02_AG, 5.1% subtype G, 4.2% subtype B, 2.5% subtype A, 2.1% each subtype F and unclassifiable, 0.4% each CRF06_CPX, CRF07_BC and CRF09_CPX.
Conclusions
The optimized in-house assay is broadly sensitive in genotyping HIV-1 group M viral strains and more sensitive than the original in-house, TRUGENE® and ViroSeq® in detecting mixed viral populations. The broad sensitivity and substantial reagent cost saving make this assay more accessible for RLS where HIVDR surveillance is recommended to minimize the development and transmission of HIVDR.
doi:10.1371/journal.pone.0028184
PMCID: PMC3223235  PMID: 22132237

Results 1-2 (2)