PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  A pilot randomized controlled trial with paroxetine for subthreshold PTSD in Operation Enduring Freedom/Operation Iraqi Freedom era veterans☆ 
Psychiatry research  2012;206(0):318-320.
Subthreshold posttraumatic stress disorder (PTSD) is associated with increased risk for suicidality, depression, and functional impairment. We thus conducted a small (N=12) pilot randomized controlled trial (RCT) with paroxetine for subthreshold PTSD in Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) era veterans. Hospital Anxiety and Depression Scale (HADS) scores improved by 30.4% in the paroxetine group. Paroxetine may have promise for subthreshold PTSD.
doi:10.1016/j.psychres.2012.11.008
PMCID: PMC3788578  PMID: 23276723
PTSD; Subthreshold; Paroxetine
2.  Proof-of-Concept Trial with the Neurosteroid Pregnenolone Targeting Cognitive and Negative Symptoms in Schizophrenia 
The neurosteroid pregnenolone and its sulfated derivative enhance learning and memory in rodents. Pregnenolone sulfate also positively modulates NMDA receptors and could thus ameliorate hypothesized NMDA receptor hypofunction in schizophrenia. Furthermore, clozapine increases pregnenolone in rodent hippocampus, possibly contributing to its superior efficacy. We therefore investigated adjunctive pregnenolone for cognitive and negative symptoms in patients with schizophrenia or schizoaffective disorder receiving stable doses of second-generation antipsychotics in a pilot randomized, placebo-controlled, double-blind trial. Following a 2-week single-blind placebo lead-in, patients were randomized to pregnenolone (fixed escalating doses to 500 mg/day) or placebo, for 8 weeks. Primary end points were changes in BACS and MCCB composite and total SANS scores. Of 21 patients randomized, 18 completed at least 4 weeks of treatment (n = 9/group). Pregnenolone was well tolerated. Patients receiving pregnenolone demonstrated significantly greater improvements in SANS scores (mean change = 10.38) compared with patients receiving placebo (mean change = 2.33), p = 0.048. Mean composite changes in BACS and MCCB scores were not significantly different in patients randomized to pregnenolone compared with placebo. However, serum pregnenolone increases predicted BACS composite scores at 8 weeks in the pregnenolone group (rs = 0.81, p = 0.022). Increases in allopregnanolone, a GABAergic pregnenolone metabolite, also predicted BACS composite scores (rs = 0.74, p = 0.046). In addition, baseline pregnenolone (rs = −0.76, p = 0.037), pregnenolone sulfate (rs = − 0.83, p = 0.015), and allopregnanolone levels (rs = −0.83, p = 0.015) were inversely correlated with improvements in MCCB composite scores, further supporting a possible role for neurosteroids in cognition. Mean BACS and MCCB composite scores were correlated (rs = 0.74, p <0.0001). Pregnenolone may be a promising therapeutic agent for negative symptoms and merits further investigation for cognitive symptoms in schizophrenia.
doi:10.1038/npp.2009.26
PMCID: PMC3427920  PMID: 19339966
schizophrenia; negative symptoms; cognitive symptoms; neurosteroid; pregnenolone; allopregnanolone
3.  Dopamine attenuates evoked inhibitory synaptic currents in central amygdala neurons 
The European journal of neuroscience  2010;32(11):1836-1842.
The central nucleus of the amygdala (CeA) plays a critical role in regulating the behavioral, autonomic and endocrine response to stress. Dopamine (DA) participates in mediating the stress response and DA release is enhanced in the CeA during stressful events. However, the electrophysiological effects of DA on CeA neurons have not yet been characterized. Therefore, the purpose of this study was to identify and characterize the effect of DA application on electrophysiological responses of CeA neurons in coronal brain sections of male Sprague Dawley rats. We used whole cell patch clamp electrophysiological techniques to record evoked synaptic responses and to determine basic membrane properties of CeA neurons both before and after DA superfusion. DA (20–250μM) did not significantly alter membrane conductance over the voltage range tested. However, DA significantly reduced peak amplitude of evoked inhibitory synaptic currents in CeA neurons. Pretreatment with the D2 receptor antagonist eticlopride failed to significantly block the inhibitory effects of DA. In contrast, pretreatment with the D1 receptor antagonist SCH-23390 significantly reduced DA effects on evoked inhibitory neurotransmission in these neurons. Moreover, bath superfusion of the specific D1 receptor agonist SKF-39393, but not the D2 receptor agonist quinpirole, significantly reduced peak amplitude of evoked inhibitory synaptic events. DA reduced the frequency of miniature IPSCs without altering the amplitude, while having no effect on the amplitude of IPSCs elicited by pressure application of GABA. These results suggest that DA may modulate inhibitory synaptic transmission in CeA through D1 receptor activation primarily by a presynaptic mechanism.
doi:10.1111/j.1460-9568.2010.07457.x
PMCID: PMC2994996  PMID: 20955472
GABA; stress; electrophysiology; rat; inhibition
4.  Neurosteroids and Self-Reported Pain in Veterans Who Served in the U.S. Military After September 11, 2001 
Pain medicine (Malden, Mass.)  2010;11(10):1469-1476.
Objective
Nearly half of Operation Enduring Freedom / Operation Iraqi Freedom (OEF/OIF) veterans experience continued pain post-deployment. Several investigations report analgesic effects of allopregnanolone and other neurosteroids in animal models, but few data are currently available focusing on neurosteroids in clinical populations. Allopregnanolone positively modulates GABAA receptors and demonstrates pronounced analgesic and anxiolytic effects in rodents, yet studies examining the relationship between pain and allopregnanolone in humans are limited. We thus hypothesized that endogenous allopregnanolone and other neurosteroid levels may be negatively correlated with self-reported pain symptoms in humans.
Design
We determined serum neurosteroid levels by gas chromatography / mass spectrometry (allopregnanolone, pregnenolone) or radioimmunoassay (dehydroepiandrosterone [DHEA], progesterone, DHEA sulfate [DHEAS]) in 90 male veterans who served in the U.S. military after September 11, 2001. Self-reported pain symptoms were assessed in four areas (low back pain, chest pain, muscle soreness, headache). Stepwise linear regression analyses were conducted to investigate the relationship between pain assessments and neurosteroids, with the inclusion of smoking, alcohol use, age, and history of traumatic brain injury as covariates.
Setting
Durham VA Medical Center.
Results
Allopregnanolone levels were inversely associated with low back pain (p=0.044) and chest pain (p=0.013), and DHEA levels were inversely associated with muscle soreness (p=0.024). DHEAS levels were positively associated with chest pain (p=0.001). Additionally, there was a positive association between traumatic brain injury and muscle soreness (p=0.002).
Conclusions
Neurosteroids may be relevant to the pathophysiology of self-reported pain symptoms in this veteran cohort, and could represent future pharmacological targets for pain disorders.
doi:10.1111/j.1526-4637.2010.00927.x
PMCID: PMC2994993  PMID: 20735755
neuroactive steroid; allopregnanolone; pregnenolone; DHEA; nociception; pain; neurosteroid
5.  Allopregnanolone Levels are Reduced in Temporal Cortex in Patients with Alzheimer’s Disease Compared to Cognitively Intact Control Subjects 
Biochimica et biophysica acta  2010;1801(8):951-959.
Background
The neurosteroid allopregnanolone has pronounced neuroprotective actions, increases myelination, and enhances neurogenesis. Evidence suggests that allopregnanolone dysregulation may play a role in the pathophysiology of Alzheimer’s disease (AD) and other neurodegenerative disorders. Our prior data demonstrate that allopregnanolone is reduced in prefrontal cortex in male patients with AD compared to male cognitively intact control subjects, and inversely correlated with neuropathological disease stage (Braak and Braak). We therefore determined if allopregnanolone levels are also reduced in AD patients compared to control subjects in temporal cortex, utilizing a larger set of samples from both male and female patients. In addition, we investigated if neurosteroids are altered in subjects who are APOE4 allele carriers.
Methods
Allopregnanolone, dehydroepiandrosterone (DHEA), and pregnenolone levels were determined in temporal cortex postmortem samples by gas chromatography/mass spectrometry, preceded by high performance liquid chromatography (40 subjects with AD/41 cognitively intact control subjects).
Results
Allopregnanolone levels are reduced in temporal cortex in patients with AD (median 2.68 ng/g, n= 40) compared to control subjects (median 5.64 ng/g, n=41), Mann-Whitney p=0.0002, and inversely correlated with Braak and Braak neuropathological disease stage (Spearman r= −0.38, p=0.0004). DHEA and pregnenolone are increased in patients with AD compared to control subjects. Patients carrying an APOE4 allele demonstrate reduced allopregnanolone levels in temporal cortex (Mann-Whitney p=0.04).
Conclusions
Neurosteroids are altered in temporal cortex in patients with AD and related to neuropathological disease stage. The APOE4 allele is associated with reduced allopregnanolone levels. Neurosteroids may be relevant to the neurobiology and therapeutics of AD.
doi:10.1016/j.bbalip.2010.05.006
PMCID: PMC2907131  PMID: 20488256

Results 1-5 (5)