Search tips
Search criteria

Results 1-25 (37)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  C1 posterior arch screw as an auxiliary anchor in posterior reconstruction for atlantoaxial dislocation associated with type II odontoid fracture: a case report and review of the literature 
SpringerPlus  2014;3:672.
Although pedicle or lateral mass screws are usually chosen to fix atlantoaxial (C1-C2) instability, there is an increased risk for vertebral artery (VA) injury when used in patients with bone or arterial anomalies or osteoporotic bone. Here we report the C1 posterior arch screw as a new technique for upper cervical fixation.
Case description
A 90-year-old man complained of upper cervical pain after falling in his house. The initial computed tomography (CT) scan showed C1-C2 posterior dislocation with a type II odontoid fracture. The patient underwent C2 fracture reduction and posterior C1-C2 fixation. On the right side of C1, because lateral mass screw placement could cause injury to the dominant VA considering a risk in oldest-old osteoporotic patients, a posterior arch screw was chosen instead as an auxiliary anchor. An intralaminar screw was placed on the right side of C2 because a high-riding VA was observed. A lateral mass screw and a pars interarticularis screw were placed on the left side of C1 and C2, respectively. Ten months later, the odontoid fracture had healed, with normal anatomical alignment. Although the patient experienced slight weakness when spreading his bilateral fingers, his overall condition was good.
Discussion and evaluation
We have presented a novel technique using C1 posterior arch screws for the fixation of a C1-C2 dislocation. Such a screw is an alternative to the C1 lateral mass screw in patients who are at risk for a VA injury because of anomalous bone and arterial structures or poor bone quality.
Although there have been few comparable studies, and the long-term outcome is unknown, fixation with a posterior arch screw could be a beneficial choice for surgeries involving the upper cervical region.
PMCID: PMC4234742  PMID: 25485206
Posterior arch screw; Atlantoaxial dislocation; Odontoid fracture; Vertebral artery injury
2.  Spinal coronal profiles and proximal femur bone mineral density in adolescent idiopathic scoliosis 
European Spine Journal  2013;22(11):2433-2437.
Although the occurrence and progression of AIS has been linked to low bone mineral density (BMD), the relationships between spinal curvature and bilateral differences in proximal femur BMD are controversial. Few correlation studies have stratified patients by curve type. The purpose of this study was to evaluate the relationships between spinal coronal profile and bilateral differences in proximal femur BMD in patients with adolescent idiopathic scoliosis (AIS).
This study included 67 patients with AIS who underwent posterior correction and fusion surgery between January 2009 and October 2011. The mean age at the time of surgery was 17.4 ± 4.1 years. Bilateral proximal femur BMD was measured before surgery by dual-energy X-ray absorptiometry. We compared the proximal femur BMDs by determining the bilateral BMD ratio (left proximal femur BMD divided by that of the right). We evaluated correlations between coronal parameters, obtained from preoperative radiographs, and the BMD ratio using Pearson’s correlation analysis.
Patients with Lenke type 1 curve (48; all with a right convex curve) had a mean bilateral proximal femur BMD ratio of 1.00 ± 0.04. Patients with Lenke type 5 curve (19; all with a left convex curve) had a mean bilateral proximal femur BMD ratio of 0.94 ± 0.04, indicating that the BMD in the proximal femur on the right side (concave) was greater than that in the left (convex). Coronal balance was significantly correlated with the BMD ratio in both the Lenke type 1 and type 5 groups, with a correlation coefficient of 0.46 and 0.50, respectively.
The bilateral proximal femur BMD ratio was significantly correlated with the coronal balance in AIS patients. When the C7 plumb line was shifted toward one side, the BMD was greater in the contralateral proximal femur.
PMCID: PMC3886500  PMID: 23764767
Adolescent idiopathic scoliosis; Bone mineral density; Proximal femur
3.  Focal Transplantation of Human iPSC-Derived Glial-Rich Neural Progenitors Improves Lifespan of ALS Mice 
Stem Cell Reports  2014;3(2):242-249.
Transplantation of glial-rich neural progenitors has been demonstrated to attenuate motor neuron degeneration and disease progression in rodent models of mutant superoxide dismutase 1 (SOD1)-mediated amyotrophic lateral sclerosis (ALS). However, translation of these results into a clinical setting requires a renewable human cell source. Here, we derived glial-rich neural progenitors from human iPSCs and transplanted them into the lumbar spinal cord of ALS mouse models. The transplanted cells differentiated into astrocytes, and the treated mouse group showed prolonged lifespan. Our data suggest a potential therapeutic mechanism via activation of AKT signal. The results demonstrated the efficacy of cell therapy for ALS by the use of human iPSCs as cell source.
Graphical Abstract
•Transplantation of human iPSC-derived cells to spinal cord of ALS model mice•Transplanted glial-rich NPCs attenuated non-cell autonomous neurodegeneration•Feasibility study for ALS transplantation is presented
Transplantation research as ALS therapy is an important issue. In this study, Inoue and colleagues transplanted glial-rich neural progenitors derived from human iPSCs into the lumbar spinal cord of ALS mice. The transplanted cells differentiated into astrocytes, and the treated mouse group showed prolonged lifespan via increased neurotrophic factors and activation of AKT signal. Human iPSCs could be a promising resource for ALS transplantation therapy.
PMCID: PMC4175543  PMID: 25254338
4.  Investigation of chronic musculoskeletal pain (third report): with special reference to the importance of neuropathic pain and psychogenic pain 
Journal of Orthopaedic Science  2014;19(4):667-675.
The previous epidemiological surveys conducted in Japan revealed that once the vicious cycle of chronic musculoskeletal pain begins, it is difficult to disrupt the cycle. This finding suggests the existence of problems with the conventional approaches to treatment of chronic musculoskeletal pain. The purpose of this study was to investigate the characteristics of patients with chronic musculoskeletal pain focusing on neuropathic and psychogenic pain.
The questionnaire was sent again to the 660 subjects found to have persistent chronic pain in the epidemiological surveys conducted in 2011. Responses were collected from 588 subjects (response rate 90 %).
Of the 588 responders, 365 (62 %) complained of persistent chronic pain. Among them, 128 (35 %) were still receiving treatment and 193 (53 %) had discontinued treatment. The degree of satisfaction with the treatment was low, and 66 % of the patients had switched the medical facility that they visited to receive treatment. The cited reasons for the change in the medical facility visited and discontinuation of treatment were “treatment was ineffective,” “I did not have sufficient time,” “I thought I could take care of it myself,” and “Treatment seemed to be unnecessary”. Involvement of neuropathic pain was suggested in 20 % of all the patients with chronic pain. As the PainDETECT Score rose, the Visual Analog Scale (VAS) score became higher and the change of medical facility for treatment also increased. The Pain Catastrophizing Scale score was correlated positively with the VAS score. The Hospital Anxiety and Depression Scale score was significantly correlated with the VAS score and the duration of pain.
The results of this survey indicated that the chronic course of musculoskeletal pain may be attributable to the following factors: (1) lack of appropriate treatment of neuropathic pain and psychogenic pain, and (2) insufficient awareness/knowledge among patients about chronic musculoskeletal pain.
PMCID: PMC4111854  PMID: 24737064
5.  Surgeons' Exposure to Radiation in Single- and Multi-Level Minimally Invasive Transforaminal Lumbar Interbody Fusion; A Prospective Study 
PLoS ONE  2014;9(4):e95233.
Although minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) has widely been developed in patients with lumbar diseases, surgeons risk exposure to fluoroscopic radiation. However, to date, there is no studies quantifying the effective dose during MIS-TLIF procedure, and the radiation dose distribution is still unclear. In this study, the surgeons' radiation doses at 5 places on the bodies were measured and the effective doses were assessed during 31 consecutive 1- to 3-level MIS-TLIF surgeries. The operating surgeon, assisting surgeon, and radiological technologist wore thermoluminescent dosimeter on the unshielded thyroid, chest, genitals, right middle finger, and on the chest beneath a lead apron. The doses at the lens and the effective doses were also calculated. Mean fluoroscopy times were 38.7, 53.1, and 58.5 seconds for 1, 2, or 3 fusion levels, respectively. The operating surgeon's mean exposures at the lens, thyroid, chest, genitals, finger, and the chest beneath the shield, respectively, were 0.07, 0.07, 0.09, 0.14, 0.32, and 0.05 mSv in 1-level MIS-TLIF; 0.07, 0.08, 0.09, 0.18, 0.34, and 0.05 mSv in 2-level; 0.08, 0.09, 0.14, 0.15, 0.36, and 0.06 mSv in 3-level; and 0.07, 0.08, 0.10, 0.15, 0.33, and 0.05 mSv in all cases. Mean dose at the operating surgeon's right finger was significantly higher than other measurements parts (P<0.001). The operating surgeon's effective doses (0.06, 0.06, and 0.07 mSv for 1, 2, and 3 fusion levels) were low, and didn't differ significantly from those of the assisting surgeon or radiological technologist. Revision MIS-TLIF was not associated with higher surgeons' radiation doses compared to primary MIS-TLIF. There were significantly higher surgeons' radiation doses in over-weight than in normal-weight patients. The surgeons' radiation exposure during MIS-TLIF was within the safe level by the International Commission on Radiological Protection's guidelines. The accumulated radiation exposure, especially to surgeon's hands, should be carefully monitored.
PMCID: PMC3988176  PMID: 24736321
6.  Rewiring of regenerated axons by combining treadmill training with semaphorin3A inhibition 
Molecular Brain  2014;7:14.
Rats exhibit extremely limited motor function recovery after total transection of the spinal cord (SCT). We previously reported that SM-216289, a semaphorin3A inhibitor, enhanced axon regeneration and motor function recovery in SCT adult rats. However, these effects were limited because most regenerated axons likely do not connect to the right targets. Thus, rebuilding the appropriate connections for regenerated axons may enhance recovery. In this study, we combined semaphorin3A inhibitor treatment with extensive treadmill training to determine whether combined treatment would further enhance the “rewiring” of regenerated axons. In this study, which aimed for clinical applicability, we administered a newly developed, potent semaphorin3A inhibitor, SM-345431 (Vinaxanthone), using a novel drug delivery system that enables continuous drug delivery over the period of the experiment.
Treatment with SM-345431 using this delivery system enhanced axon regeneration and produced significant, but limited, hindlimb motor function recovery. Although extensive treadmill training combined with SM-345431 administration did not further improve axon regeneration, hindlimb motor performance was restored, as evidenced by the significant improvement in the execution of plantar steps on a treadmill. In contrast, control SCT rats could not execute plantar steps at any point during the experimental period. Further analyses suggested that this strategy reinforced the wiring of central pattern generators in lumbar spinal circuits, which, in turn, led to enhanced motor function recovery (especially in extensor muscles).
This study highlights the importance of combining treatments that promote axon regeneration with specific and appropriate rehabilitations that promote rewiring for the treatment of spinal cord injury.
PMCID: PMC4008261  PMID: 24618249
Axonal regeneration; Semaphorin3A; Inhibitor; Rehabilitation; Rewiring; Drug delivery system
7.  Inflammatory cascades mediate synapse elimination in spinal cord compression 
Cervical compressive myelopathy (CCM) is caused by chronic spinal cord compression due to spondylosis, a degenerative disc disease, and ossification of the ligaments. Tip-toe walking Yoshimura (twy) mice are reported to be an ideal animal model for CCM-related neuronal dysfunction, because they develop spontaneous spinal cord compression without any artificial manipulation. Previous histological studies showed that neurons are lost due to apoptosis in CCM, but the mechanism underlying this neurodegeneration was not fully elucidated. The purpose of this study was to investigate the pathophysiology of CCM by evaluating the global gene expression of the compressed spinal cord and comparing the transcriptome analysis with the physical and histological findings in twy mice.
Twenty-week-old twy mice were divided into two groups according to the magnetic resonance imaging (MRI) findings: a severe compression (S) group and a mild compression (M) group. The transcriptome was analyzed by microarray and RT-PCR. The cellular pathophysiology was examined by immunohistological analysis and immuno-electron microscopy. Motor function was assessed by Rotarod treadmill latency and stride-length tests.
Severe cervical calcification caused spinal canal stenosis and low functional capacity in twy mice. The microarray analysis revealed 215 genes that showed significantly different expression levels between the S and the M groups. Pathway analysis revealed that genes expressed at higher levels in the S group were enriched for terms related to the regulation of inflammation in the compressed spinal cord. M1 macrophage-dominant inflammation was present in the S group, and cysteine-rich protein 61 (Cyr61), an inducer of M1 macrophages, was markedly upregulated in these spinal cords. Furthermore, C1q, which initiates the classical complement cascade, was more upregulated in the S group than in the M group. The confocal and electron microscopy observations indicated that classically activated microglia/macrophages had migrated to the compressed spinal cord and eliminated synaptic terminals.
We revealed the detailed pathophysiology of the inflammatory response in an animal model of chronic spinal cord compression. Our findings suggest that complement-mediated synapse elimination is a central mechanism underlying the neurodegeneration in CCM.
PMCID: PMC3975877  PMID: 24589419
cervical compressive myelopathy; tip-toe walking Yoshimura mice; complement activation classical pathway; synapse elimination
8.  Prevalence and characteristics of chronic musculoskeletal pain in Japan: A second survey of people with or without chronic pain 
Journal of Orthopaedic Science  2014;19(2):339-350.
An epidemiological survey conducted in Japan in fiscal year 2010 revealed a high prevalence of chronic musculoskeletal pain, low patient satisfaction with treatment, a high incidence of protracted treatment lasting a year or more, and reduced quality of life. To improve the current system for treating chronic musculoskeletal pain, it is important to identify risk factors, including patient characteristics, for developing chronic pain. Thus, we sought to determine the incidence of new chronic pain in the Japanese population, as well as the persistence rate, associated factors, and current state of treatment of chronic pain, by repeating a postal survey in a nationwide representative sample group first surveyed in 2010.
Among 11,507 participants in the 2010 epidemiological survey, 1,717 reported chronic pain and 6,283 reported no chronic pain. A repeat questionnaire, mailed to subjects in these 2 groups in fiscal year 2011, received replies from 85 % of those who reported pain and 76 % of those without pain in 2010.
The incidence of new chronic pain was 11.1 %. Risk factors for developing chronic pain included working in a professional, managerial, or clerical/specialist occupation, being female, having a BMI ≥25; currently using alcohol or cigarettes; and having completed an education level of vocational school or higher. Persistent chronic pain was reported by 45.2 % of respondents. Those with severe (VAS score ≥7) and constant lower-back pain lasting more than 5 years had the highest risk of the pain persisting. More than 80 % respondents with persistent chronic pain had a history of treatment, and while about 30 % were still receiving treatment at the time of the survey, the other 50 % had discontinued treatment despite the persistence of pain because of a low degree of satisfaction with treatment.
We identified risk factors related to the development of new chronic pain and the persistence of chronic pain. Countermeasures to prevent chronic pain could be especially important for the high-risk populations for understanding the pathology of chronic pain.
PMCID: PMC3960485  PMID: 24504984
9.  Successful treatment in a case of Propionibacterium acnes-associated sarcoidosis with clarithromycin administration: a case report 
Sarcoidosis is recognized as a multiorgan disorder characterized by the presence of non-caseating granulomas in the involved tissues. It has been suggested that sarcoidosis might be due to the exposure to infectious or non-infectious agents in genetically susceptible individuals. In particular, Propionibacterium acnes and Mycobacterium tuberculosis have been considered causative microorganisms. We report a case of P. acnes-associated sarcoidosis in which a drastic improvement was achieved with clarithromycin administration. A possible mechanism of clarithromycin action is discussed.
Case presentation
A 78-year-old Japanese-Mongoloid woman with P. acnes-associated sarcoidosis presented with a persisting fever, joint pains and generalized lymph node swelling. The diagnosis of sarcoidosis was confirmed by pathological and immunohistochemical studies of a biopsied lymph node. In this case, an oral administration of clarithromycin was applied. Soon after the initiation of this treatment her symptoms as well as lymph node swelling disappeared. The clarithromycin treatment was discontinued 3.5 months after its initiation. She is currently in good condition. The pathological analysis of her lymph node, which was obtained during the clarithromycin treatment, suggested an apoptosis-inducing effect of clarithromycin on the sarcoid granulomas.
Clarithromycin was found to be effective for treating sarcoidosis and seems to have important pharmacological effects such as immunosuppression, immunomodulation and induction of apoptosis in addition to its antimicrobial role. In this case, apoptosis in the sarcoid granulomas induced by clarithromycin administration might have resulted in satisfactory improvement.
PMCID: PMC3916803  PMID: 24428939
Apoptosis; Clarithromycin (CAM); Propionibacterium acnes (P. acnes); Sarcoid granuloma; Sarcoidosis; Treatment
10.  Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells 
Cell Research  2012;23(1):70-80.
Stimulated by the 2012 Nobel Prize in Physiology or Medicine awarded for Shinya Yamanaka and Sir John Gurdon, there is an increasing interest in the induced pluripotent stem (iPS) cells and reprograming technologies in medical science. While iPS cells are expected to open a new era providing enormous opportunities in biomedical sciences in terms of cell therapies and regenerative medicine, safety-related concerns for iPS cell-based cell therapy should be resolved prior to the clinical application of iPS cells. In this review, the pre-clinical investigations of cell therapy for spinal cord injury (SCI) using neural stem/progenitor cells derived from iPS cells, and their safety issues in vivo, are outlined. We also wish to discuss the strategy for the first human trails of iPS cell-based cell therapy for SCI patients.
PMCID: PMC3541652  PMID: 23229514
neural stem/progenitor cell; induced pluripotnet stem cell; spinal cord injury; transplantation
11.  FOXC2 Mutations in Familial and Sporadic Spinal Extradural Arachnoid Cyst 
PLoS ONE  2013;8(11):e80548.
Spinal extradural arachnoid cyst (SEDAC) is a cyst in the spinal canal that protrudes into the epidural space from a defect in the dura mater. Most cases are sporadic; however, three familial SEDAC cases have been reported, suggesting genetic etiological factors. All familial cases are associated with lymphedema-distichiasis syndrome (LDS), whose causal gene is FOXC2. However, FOXC2 mutation analysis has been performed in only 1 family, and no mutation analysis has been performed on sporadic (non-familial) SEDACs. We recruited 17 SEDAC subjects consisting of 2 familial and 7 sporadic cases and examined FOXC2 mutations by Sanger sequencing and structural abnormalities by TaqMan copy number assay. We identified 2 novel FOXC2 mutations in 2 familial cases. Incomplete LDS penetrance was noted in both families. Four subjects presented with SEDACs only. Thus, SEDAC caused by the heterozygous FOXC2 loss-of-function mutation should be considered a feature of LDS, although it often manifests as the sole symptom. Seven sporadic SEDAC subjects had no FOXC2 mutations, no symptoms of LDS, and showed differing clinical characteristics from those who had FOXC2 mutations, suggesting that other gene(s) besides FOXC2 are likely to be involved in SEDAC.
PMCID: PMC3838418  PMID: 24278289
12.  Comparative study of spinopelvic sagittal alignment between patients with and without degenerative spondylolisthesis 
European Spine Journal  2012;21(11):2181-2187.
To date, few studies have focused on spinopelvic sagittal alignment as a predisposing factor for the development of degenerative spondylolisthesis (DS). The objectives of this study were to compare differences in spinopelvic sagittal alignment between patients with or without DS and to elucidate factors related to spinopelvic sagittal alignment.
Materials and methods
A total of 100 patients with or without DS who underwent surgery for lumbar spinal canal stenosis were assessed in this study. Fifty patients with DS (DS group) and 50 age- and gender-matched patients without DS (non-DS group) were enrolled. Spinopelvic parameters including pelvic incidence (PI), sacral slope (SS), pelvic tilt (PT), L4 slope, L5 slope, thoracic kyphosis (TK), lumbar lordosis (LL) and sagittal balance were compared between the two groups. In the DS group, the percentage of vertebral slip (% slip) was also measured.
Several spinopelvic parameters, PI, SS, L4 slope, L5 slope, TK and LL, in the DS group were significantly greater than those in the non-DS group, and PI had positive correlation with % slip (r = 0.35, p < 0.05). Degrees of correlations among spinopelvic parameters differed between the two groups. In the DS group, PI was more strongly correlated with SS (r = 0.82, p < 0.001) than with PT (r = 0.41, p < 0.01). In the non-DS group, PI was more strongly correlated with PT (r = 0.73, p < 0.001) than with SS (r = 0.38, p < 0.01).
Greater PI may lead to the development and the progression of vertebral slip. Different compensatory mechanisms may contribute to the maintenance of spinopelvic sagittal alignment in DS and non-DS patients.
PMCID: PMC3481103  PMID: 22639298
Spinopelvic sagittal alignment; Pelvic incidence; Lumbar spinal canal stenosis; Degenerative spondylolisthesis; Percentage of vertebral slip
13.  Loss of apical vertebral derotation in adolescent idiopathic scoliosis: 2-year follow-up using multi-planar reconstruction computed tomography 
European Spine Journal  2012;21(6):1111-1120.
The objective of this study was to evaluate 2 years post-surgical loss of three-dimensional correction in adolescent idiopathic scoliosis (AIS) patients using multi-planar reconstruction computed tomography (CT).
Twenty-seven AIS patients treated by segmental pedicle screw (PS) constructs were included in this study. Correction in the axial plane was evaluated using the “relative apical vertebral rotation angle” (rAVR), defined as the difference between the axial rotation angles of the upper instrumented vertebra and the apical vertebra on reconstructed axial CT images. The Cobb angle of the main curve and apical vertebral translation was measured to evaluate the coronal correction. Thoracic kyphosis was also measured for the evaluation of sagittal profile. Measurements were performed before surgery, and 1 week and 2 years after surgery. The relationships between the correction losses and skeletal maturity, and variety of spinal constructs were also evaluated.
The mean preoperative Cobb angle of the major curve was 59.1° ± 11.2° before and 13.0° ± 7.2° immediately after surgery. Two years later, the mean Cobb angle had increased significantly, to 15.5° ± 7.8°, with a mean correction loss of 2.5° ± 1.5° (p < 0.001). The mean preoperative rAVR of 28.5° ± 8.4° was corrected to 15.8° ± 7.8° after surgery. It had increased significantly to 18.5 ± 8.4 by 2 years after surgery, with a mean correction loss of 2.7° ± 1.0° (p < 0.001). The mean correction losses for both the Cobb angle and rAVR were significantly greater in the skeletally immature patients. The significant correlations were recognized between the correction losses and the proportion of multi-axial screws, and the materials of constructs.
Statistically significant loss of correction in the Cobb angle and apical vertebral axial rotation angle (AVR) were recognized 2 years after surgery using PS constructs. The correction losses, especially AVR, were more evident in the skeletally immature patients, and in patients treated with more multi-axial screws and with titanium constructs rather than with stainless constructs.
PMCID: PMC3366141  PMID: 22438165
Adolescent idiopathic scoliosis; Apical vertebral rotation; Correction loss; Coronal correction
14.  Health Survey of Numbness/Pain and Its Associated Factors in Kotohira, Japan 
PLoS ONE  2013;8(4):e60079.
We conducted a survey of adults in Kotohira, a town of about 10,000 people located in the Nakatado District of Kagawa Prefecture, Japan. The survey was distributed to 8184 individuals, and effective responses were received from 3863 persons (response rate, 47.2%) during the survey period. Results regarding numbness and pain showed numbness alone in 7.7%, pain alone in 7.2%, both numbness and pain in 6.0%, and neither numbness nor pain in 79.6%. Spine and spinal cord damage was reported present by 5.4%, and absent by 94.6%. Analysis using the Short-Form Health Survey questionnaire, with comparison between subjects reporting both numbness and pain in the extremities and subjects with either numbness or pain alone, showed lower scores for in Short-Form Health Survey subscales (physical functioning, role [physical, emotional], bodily pain, vitality, and mental health). Subjects with numbness alone generally reported no disability in daily life. In a secondary survey, analysis of neurological findings by specialists identified 6 cases of “pain following spinal cord damage” in which spinal cord-related pain developed in the hands or feet. This represented 0.15% of the survey population starting from the primary survey.
PMCID: PMC3613342  PMID: 23560069
15.  Time-dependent changes in the microenvironment of injured spinal cord affects the therapeutic potential of neural stem cell transplantation for spinal cord injury 
Molecular Brain  2013;6:3.
The transplantation of neural stem/progenitor cells (NS/PCs) at the sub-acute phase of spinal cord injury, but not at the chronic phase, can promote functional recovery. However, the reasons for this difference and whether it involves the survival and/or fate of grafted cells under these two conditions remain unclear. To address this question, NS/PC transplantation was performed after contusive spinal cord injury in adult mice at the sub-acute and chronic phases.
Quantitative analyses using bio-imaging, which can noninvasively detect surviving grafted cells in living animals, revealed no significant difference in the survival rate of grafted cells between the sub-acute and chronic transplantation groups. Additionally, immunohistology revealed no significant difference in the differentiation phenotypes of grafted cells between the two groups. Microarray analysis revealed no significant differences in the expression of genes encoding inflammatory cytokines or growth factors, which affect the survival and/or fate of grafted cells, in the injured spinal cord between the sub-acute and chronic phases. By contrast, the distribution of chronically grafted NS/PCs was restricted compared to NS/PCs grafted at the sub-acute phase because a more prominent glial scar located around the lesion epicenter enclosed the grafted cells. Furthermore, microarray and histological analysis revealed that the infiltration of macrophages, especially M2 macrophages, which have anti-inflammatory role, was significantly higher at the sub-acute phase than the chronic phase. Ultimately, NS/PCs that were transplanted in the sub-acute phase, but not the chronic phase, promoted functional recovery compared with the vehicle control group.
The extent of glial scar formation and the characteristics of inflammation is the most remarkable difference in the injured spinal cord microenvironment between the sub-acute and chronic phases. To achieve functional recovery by NS/PC transplantation in cases at the chronic phase, modification of the microenvironment of the injured spinal cord focusing on glial scar formation and inflammatory phenotype should be considered.
PMCID: PMC3556141  PMID: 23298657
Spinal cord injury; Neural stem/progenitor cells; Cell transplantation; Chronic phase; Microenvironment
16.  MRI Characterization of Paranodal Junction Failure and Related Spinal Cord Changes in Mice 
PLoS ONE  2012;7(12):e52904.
The paranodal junction is a specialized axon-glia contact zone that is important for normal neuronal activity and behavioral locomotor function in the central nervous system (CNS). Histological examination has been the only method for detecting pathological paranodal junction conditions. Recently, diffusion tensor MRI (DTI) has been used to detect microstructural changes in various CNS diseases. This study was conducted to determine whether MRI and DTI could detect structural changes in the paranodal junctions of the spinal cord in cerebroside sulfotransferase knock-out (CST-KO) mice. Here, we showed that high-resolution MRI and DTI characteristics can reflect paranodal junction failure in CST-KO mice. We found significantly lower T1 times and significantly higher T2 times in the spinal cord MRIs of CST-KO mice as compared to wild-type (WT) mice. Spinal cord DTI showed significantly lower axial diffusivity and significantly higher radial diffusivity in CST-KO mice as compared to WT mice. In contrast, the histological differences in the paranodal junctions of WT and CST-KO mice were so subtle that electron microscopy or immunohistological analyses were necessary to detect them. We also measured gait disturbance in the CST-KO mice, and determined the conduction latency by electrophysiology. These findings demonstrate the potential of using MRI and DTI to evaluate white matter disorders that involve paranodal junction failure.
PMCID: PMC3531327  PMID: 23300814
17.  Pre-Evaluated Safe Human iPSC-Derived Neural Stem Cells Promote Functional Recovery after Spinal Cord Injury in Common Marmoset without Tumorigenicity 
PLoS ONE  2012;7(12):e52787.
Murine and human iPSC-NS/PCs (induced pluripotent stem cell-derived neural stem/progenitor cells) promote functional recovery following transplantation into the injured spinal cord in rodents. However, for clinical applicability, it is critical to obtain proof of the concept regarding the efficacy of grafted human iPSC-NS/PCs (hiPSC-NS/PCs) for the repair of spinal cord injury (SCI) in a non-human primate model. This study used a pre-evaluated “safe” hiPSC-NS/PC clone and an adult common marmoset (Callithrix jacchus) model of contusive SCI. SCI was induced at the fifth cervical level (C5), followed by transplantation of hiPSC-NS/PCs at 9 days after injury. Behavioral analyses were performed from the time of the initial injury until 12 weeks after SCI. Grafted hiPSC-NS/PCs survived and differentiated into all three neural lineages. Furthermore, transplantation of hiPSC-NS/PCs enhanced axonal sparing/regrowth and angiogenesis, and prevented the demyelination after SCI compared with that in vehicle control animals. Notably, no tumor formation occurred for at least 12 weeks after transplantation. Quantitative RT-PCR showed that mRNA expression levels of human neurotrophic factors were significantly higher in cultured hiPSC-NS/PCs than in human dermal fibroblasts (hDFs). Finally, behavioral tests showed that hiPSC-NS/PCs promoted functional recovery after SCI in the common marmoset. Taken together, these results indicate that pre-evaluated safe hiPSC-NS/PCs are a potential source of cells for the treatment of SCI in the clinic.
PMCID: PMC3531369  PMID: 23300777
18.  Complete Remission of Methotrexate-Related Epstein-Barr-Virus-Associated Hodgkin-Like Lymphoma following Withdrawal of MTX Coupled with Clarithromycin Administration 
Case Reports in Hematology  2012;2012:658745.
Patients with rheumatoid arthritis (RA) are known to develop lymphoproliferative disorders (LPDs) during the course of illness, particularly in cases treated with methotrexate (MTX) for long periods. We describe a case of MTX-related Epstein-Barr-virus-(EBV-) associated LPD resembling Hodgkin's lymphoma (HL), in which a dramatic complete remission was achieved after withdrawal of MTX coupled with clarithromycin (CAM) administration. Withdrawal of MTX coupled with CAM administration seemed to be effective for treating MTX-related EBV-associated LPDs. In particular, an immunomodulative effect of CAM might have been involved in achieving complete remission.
PMCID: PMC3535817  PMID: 23316401
19.  Novel In Vivo Imaging Analysis of an Inner Ear Drug Delivery System in Mice: Comparison of Inner Ear Drug Concentrations over Time after Transtympanic and Systemic Injections 
PLoS ONE  2012;7(12):e48480.
Systemic steroid injections are used to treat idiopathic sudden-onset sensorineural hearing loss (ISSHL) and some inner ear disorders. Recent studies show that transtympanic (TT) steroid injections are effective for treating ISSHL. As in vivo monitoring of drug delivery dynamics for inner ear is lacking, its time course and dispersion of drugs is unknown. Here, we used a new in vivo imaging system to monitor drug delivery in live mice and to compare drug concentrations over time after TT and systemic injections.
Luciferin delivered into the inner ears of GFAP-Luc transgenic mice reacted with luciferase in GFAP-expressing cells in the cochlear spiral ganglion, resulting in photon bioluminescence. We used the Xenogen IVIS® imaging system to measure how long photons continued to be emitted in the inner ear after TT or systemic injections of luciferin, and then compared the associated drug dynamics.
The response to TT and IP injections differed significantly. Photons were detected five minutes after TT injection, peaking at ∼20 minutes. By contrast, photons were first detected 30 minutes after i.p. injection. TT and i.p. drug delivery time differed considerably. With TT injections, photons were detected earlier than with IP injections. Photon bioluminescence also disappeared sooner. Delivery time varied with TT injections.
We speculate that the drug might enter the Eustachian tube from the middle ear. We conclude that inner-ear drug concentration can be maintained longer if the two injection routes are combined. As the size of luciferin differs from that of therapeutics like dexamethasone, combining drugs with luciferin may advance our understanding of in vivo drug delivery dynamics in the inner ear.
PMCID: PMC3520978  PMID: 23251331
20.  Efficient Derivation of Multipotent Neural Stem/Progenitor Cells from Non-Human Primate Embryonic Stem Cells 
PLoS ONE  2012;7(11):e49469.
The common marmoset (Callithrix jacchus) is a small New World primate that has been used as a non-human primate model for various biomedical studies. We previously demonstrated that transplantation of neural stem/progenitor cells (NS/PCs) derived from mouse and human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) promote functional locomotor recovery of mouse spinal cord injury models. However, for the clinical application of such a therapeutic approach, we need to evaluate the efficacy and safety of pluripotent stem cell-derived NS/PCs not only by xenotransplantation, but also allotransplantation using non-human primate models to assess immunological rejection and tumorigenicity. In the present study, we established a culture method to efficiently derive NS/PCs as neurospheres from common marmoset ESCs. Marmoset ESC-derived neurospheres could be passaged repeatedly and showed sequential generation of neurons and astrocytes, similar to that of mouse ESC-derived NS/PCs, and gave rise to functional neurons as indicated by calcium imaging. Although marmoset ESC-derived NS/PCs could not differentiate into oligodendrocytes under default culture conditions, these cells could abundantly generate oligodendrocytes by incorporating additional signals that recapitulate in vivo neural development. Moreover, principal component analysis of microarray data demonstrated that marmoset ESC-derived NS/PCs acquired similar gene expression profiles to those of fetal brain-derived NS/PCs by repeated passaging. Therefore, marmoset ESC-derived NS/PCs may be useful not only for accurate evaluation by allotransplantation of NS/PCs into non-human primate models, but are also applicable to analysis of iPSCs established from transgenic disease model marmosets.
PMCID: PMC3498141  PMID: 23166679
21.  Cell Therapy for Spinal Cord Injury by Neural Stem/Progenitor Cells Derived from iPS/ES Cells 
Neurotherapeutics  2011;8(4):668-676.
Reports of functional recovery from spinal cord injury after the transplantation of rat fetus-derived neural stem cells and embryonic stem cells has raised great expectations for the successful clinical use of stem cell transplantation therapy. However, the ethical issues involved in destroying human embryos or fertilized oocytes to obtain stem cells have been a major obstacle to developing clinically useful stem cell sources, and the transplantation of stem cells isolated from other human embryonic tissues has not yet been developed for use in clinical applications. Recently, induced pluripotent stem cells, which can serve as a source of cells for autologous transplantation, have been attracting a great deal of attention as a clinically viable alternative to stem cells obtained directly from tissues. In this review, we outline the neural induction of mouse embryonic stem cells and induced pluripotent stem cells, their therapeutic efficacy in spinal cord injury, and their safety in vivo.
Electronic supplementary material
The online version of this article (doi:10.1007/s13311-011-0063-z) contains supplementary material, which is available to authorized users.
PMCID: PMC3250290  PMID: 21909829
Induced pluripotent stem cells; Embryonic stem cells; Neural differentiation; Cell transplantation; Spinal cord injury; Safety
22.  Vertebral derotation in adolescent idiopathic scoliosis causes hypokyphosis of the thoracic spine 
The purpose of this study was to test the hypothesis that direct vertebral derotation by pedicle screws (PS) causes hypokyphosis of the thoracic spine in adolescent idiopathic scoliosis (AIS) patients, using computer simulation.
Twenty AIS patients with Lenke type 1 or 2 who underwent posterior correction surgeries using PS were included in this study. Simulated corrections of each patient’s scoliosis, as determined by the preoperative CT scan data, were performed on segmented 3D models of the whole spine. Two types of simulated extreme correction were performed: 1) complete coronal correction only (C method) and 2) complete coronal correction with complete derotation of vertebral bodies (C + D method). The kyphosis angle (T5-T12) and vertebral rotation angle at the apex were measured before and after the simulated corrections.
The mean kyphosis angle after the C + D method was significantly smaller than that after the C method (2.7 ± 10.0° vs. 15.0 ± 7.1°, p < 0.01). The mean preoperative apical rotation angle of 15.2 ± 5.5° was completely corrected after the C + D method (0°) and was unchanged after the C method (17.6 ± 4.2°).
In the 3D simulation study, kyphosis was reduced after complete correction of the coronal and rotational deformity, but it was maintained after the coronal-only correction. These results proved the hypothesis that the vertebral derotation obtained by PS causes hypokyphosis of the thoracic spine.
PMCID: PMC3441743  PMID: 22691717
23.  Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice 
Recent in vivo and in vitro studies in non-neuronal and neuronal tissues have shown that different pathways of macrophage activation result in cells with different properties. Interleukin (IL)-6 triggers the classically activated inflammatory macrophages (M1 phenotype), whereas the alternatively activated macrophages (M2 phenotype) are anti-inflammatory. The objective of this study was to clarify the effects of a temporal blockade of IL-6/IL-6 receptor (IL-6R) engagement, using an anti-mouse IL-6R monoclonal antibody (MR16-1), on macrophage activation and the inflammatory response in the acute phase after spinal cord injury (SCI) in mice.
MR16-1 antibodies versus isotype control antibodies or saline alone were administered immediately after thoracic SCI in mice. SC tissue repair was compared between the two groups by Luxol fast blue (LFB) staining for myelination and immunoreactivity for the neuronal markers growth-associated protein (GAP)-43 and neurofilament heavy 200 kDa (NF-H) and for locomotor function. The expression of T helper (Th)1 cytokines (interferon (IFN)-γ and tumor necrosis factor-α) and Th2 cytokines (IL-4, IL-13) was determined by immunoblot analysis. The presence of M1 (inducible nitric oxide synthase (iNOS)-positive, CD16/32-positive) and M2 (arginase 1-positive, CD206-positive) macrophages was determined by immunohistology. Using flow cytometry, we also quantified IFN-γ and IL-4 levels in neutrophils, microglia, and macrophages, and Mac-2 (macrophage antigen-2) and Mac-3 in M2 macrophages and microglia.
LFB-positive spared myelin was increased in the MR16-1-treated group compared with the controls, and this increase correlated with enhanced positivity for GAP-43 or NF-H, and improved locomotor Basso Mouse Scale scores. Immunoblot analysis of the MR16-1-treated samples identified downregulation of Th1 and upregulation of Th2 cytokines. Whereas iNOS-positive, CD16/32-positive M1 macrophages were the predominant phenotype in the injured SC of non-treated control mice, MR16-1 treatment promoted arginase 1-positive, CD206-positive M2 macrophages, with preferential localization of these cells at the injury site. MR16-1 treatment suppressed the number of IFN-γ-positive neutrophils, and increased the number of microglia present and their positivity for IL-4. Among the arginase 1-positive M2 macrophages, MR16-1 treatment increased positivity for Mac-2 and Mac-3, suggestive of increased phagocytic behavior.
The results suggest that temporal blockade of IL-6 signaling after SCI abrogates damaging inflammatory activity and promotes functional recovery by promoting the formation of alternatively activated M2 macrophages.
PMCID: PMC3310810  PMID: 22369693
Spinal cord injury; Interleukin (IL)-6/IL6 receptor (R); Alternatively activated macrophage; Arginase 1; Inducible nitric oxide synthase (iNOS); T helper (Th) cytokine
24.  Human Hepatocyte Growth Factor Promotes Functional Recovery in Primates after Spinal Cord Injury 
PLoS ONE  2011;6(11):e27706.
Many therapeutic interventions for spinal cord injury (SCI) using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF), which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF) intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.
PMCID: PMC3226561  PMID: 22140459
25.  Beneficial compaction of spinal cord lesion by migrating astrocytes through glycogen synthase kinase-3 inhibition 
EMBO Molecular Medicine  2011;3(11):682-696.
The migratory response of astrocytes is essential for restricting inflammation and preserving tissue function after spinal cord injury (SCI), but the mechanisms involved are poorly understood. Here, we observed stimulation of in vitro astrocyte migration by the new potent glycogen synthase kinase-3 (GSK-3) inhibitor Ro3303544 and investigated the effect of Ro3303544 administration for 5 days following SCI in mice. This treatment resulted in accelerated migration of reactive astrocytes to sequester inflammatory cells that spared myelinated fibres and significantly promoted functional recovery. Moreover, the decreased extent of chondroitin sulphate proteoglycans and collagen IV demonstrated that scarring was reduced in Ro3303544-treated mice. A variety of in vitro and in vivo experiments further suggested that GSK-3 inhibition stimulated astrocyte migration by decreasing adhesive activity via reduced surface expression of β1-integrin. Our results reveal a novel benefit of GSK-3 inhibition for SCI and suggest that the stimulation of astrocyte migration is a feasible therapeutic strategy for traumatic injury in the central nervous system.
PMCID: PMC3377108  PMID: 21898827
astrocyte; glial scar; GSK-3; migration; spinal cord injury

Results 1-25 (37)