PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (30)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Isolation, Structure Determination, and Anti-HIV Evaluation of Tigliane-type Diterpenes and Biflavonoid from Stellera chamaejasme 
Journal of natural products  2013;76(5):852-857.
Five novel tigliane-type diterpenes, stelleracins A–E (3–7), a novel flavanone dimer, chamaeflavone A (8), and six known compounds were isolated from roots of Stellera chamaejasme. Their structures were elucidated by extensive spectroscopic analyses. The isolated compounds were evaluated for anti-HIV activity in MT4 cells. New compounds 3–5 showed potent anti-HIV activity (EC90 0.00056–0.0068 μM) and relatively low or no cytotoxicity (IC50 4.4–17.2 μM). These new compounds represent promising new leads for development into anti-AIDS clinical trial candidates.
doi:10.1021/np300815t
PMCID: PMC3715147  PMID: 23611151
2.  1-(3,4,5-Trimethoxyphenyl)ethane-1,2-diyl Esters, a Novel Compound Class with Potent Chemoreversal Activity 
1-(3,4,5-Trimethoxyphenyl)ethane-1,2-diyl esters, which share a fragment from (±)-3′-O-4′-O-bis(3,4-dimethoxycinnamoyl)-cis-khellactone (DMDCK) and 3′R,4′R-disubstituted-2′,2′-dimethyldihydropyrano[2,3-f]chromone (DSP), exhibited remarkable chemoreversal activity on multi-drug resistant human nasopharyngeal carcinoma (KB) when combined with three anti-cancer drugs, paclitaxel, vincristine and doxorubicin. Among 15 novel synthesized analogs, bis-trimethoxybenzoyl derivative 15 was the most active (340-fold more active than verapamil when used with vincristine) followed by two di-cinnamoyl derivatives, 10 and 11, and then di-cyclohexanecarbonyl derivative 9. All aliphatic chain derivatives, 3–5, showed no activity. Structure-activity relationship study indicated that a di-ester structure was critical to enhance the activity resulting from the maintenance of the spatial arrangement proposed by the pharmacophore based on the verapamil-binding site. Further mechanism of action study showed 15 inhibited mainly P-glycoprotein efflux pump function, while 13 exhibited an additional multidrug resistance-associated protein efflux pump function.
doi:10.1016/j.bmcl.2012.09.096
PMCID: PMC3508342  PMID: 23122817
1-(3,4,5-Trimethoxyphenyl)ethane-1,2-diyl esters; Chemoreversal activity; KB cell line
3.  Design and synthesis of gambogic acid analogs as potent cytotoxic and anti-inflammatory agents 
Prenyl- and pyrano-xanthones derived from 1,3,6-trihydroxy-9H-xanthen-9-one, a basic backbone of gambogic acid (GA), were synthesized and evaluated for in vitro cytotoxic effects against four human cancer cell lines (KB, KBvin, A549, and DU-145) and anti-inflammatory activity toward superoxide anion generation and elastase release by human neutrophils in response to fMLP/CB. Among them, prenylxanthones 7-13 were generally less active than pyranoxanthones 14-21 in both anticancer and anti-inflammatory assays. Furthermore, two angular 3,3-dimethypyranoxanthones (16 and 20) showed the greatest and selective activity against the KBvin multidrug resistant (MDR) cell line with IC50 values of 0.9 and 0.8 μ g/mL, respectively. An angular 3-methyl-3-prenylpyranoxanthone (17) selectively inhibited elastase release with 200 times more potency than phenylmethylsulfonyl fluoride (PMSF), the positive control.
doi:10.1016/j.bmcl.2012.04.084
PMCID: PMC3374489  PMID: 22595179
1,3,6-Trihydroxy-9H-xanthen-9-one; Gambogic acid (GA); Prenylxanthones; Pyranoxanthones; Cytotoxicity; Anti-inflammatory activity
4.  Antitumor Agents 293. Non-toxic Dimethyl-4,4′-dimethoxy-5,6,5′,6′-dimethylenedioxybiphenyl-2,2′-dicarboxylate (DDB) Analogs Chemosensitize Multidrug Resistant Cancer Cells to Clinical Anticancer Drugs 
Journal of Medicinal Chemistry  2012;55(11):5413-5424.
Novel dimethyl-4,4′-dimethoxy-5,6,5′,6′-dimethylenedioxybiphenyl-2,2′-dicarboxylate (DDB) analogs were designed and synthesized to improve their chemosensitizing action on KBvin (vincristine resistant nasopharyngeal carcinoma) cells, a multi-drug resistant cell line over-expressing P-glycoprotein (P-gp). Structure-activity relationship analysis showed that aromatic and bulky aliphatic side chains at the 2,2′-positions effectively and significantly sensitized P-gp overexpressing multidrug resistant (MDR) cells to anticancer drugs, such as paclitaxel (TAX), vincristine (VCR), and doxorubicin (DOX). DDB derivatives 16 and 23 showed 5–10 times more effective reversal ability than verapamil (VRP) for TAX and VCR. Analog 6 also exhibited five times greater chemosensitizing effect against DOX than VRP. Importantly, no cytotoxicity was observed by the active DDB analogs against both non-MDR and MDR cells, suggesting that DDB analogs serve as the novel lead compounds for the development of chemosensitizers to overcome MDR phenotype. The mechanism of action studies demonstrated that effective inhibition of P-glycoprotein by DDB analogs dramatically elevated cellular concentration of anticancer drugs.
doi:10.1021/jm300378k
PMCID: PMC3375343  PMID: 22612652
5.  Antitumor Agents 289. Design, Synthesis, and Anti-breast Cancer Activity in Vivo of 4-Amino-2H-benzo[h]chromen-2-one (ABO) and 4-Amino-7,8,9,10-tetrahydro-2H-benzo[h]chromen-2-one (ATBO) Analogues with Improved Water Solubility# 
Journal of Natural Products  2012;75(3):370-377.
Previously, we reported that 4-amino-2H-benzo[h]chromen-2-one (ABO) and 4-amino-7,8,9,10-tetrahydro-2H-benzo[h]chromen-2-one (ATBO) analogues, which were developed from the lead natural produce neo-tanshinlactone, are potent cytotoxic agents. In order to improve on their water solubility, the diamino analogues and related salts were designed. All synthesized compounds were assayed for cytotoxicity, and selected compounds were evaluated for in vivo anti-mammary epithelial proliferation activity in wild-type mice and mice predisposed for mammary tumors due to Brca1/p53 mutations. The new derivatives 10, 16 (ABO), 22, and 27 (ATBO) were the most active analogues with IC50 values of 0.038–0.085 μM in the cytotoxicity assay. Analogue 10 showed around 50-fold improved water solubility compared with the prior lead ABO compound 4-[(4'-methoxyphenyl)amino]-2H-benzo[h]chromen-2-one (3). Compounds 3, 4, 10, and 22 significantly reduced overall numbers of mammary cells as indicated by the reduction of mammary gland branching in mutant mice. A one-week treatment with 10 resulted in 80% reduction in BrdU-positive cells in the cancer prone mammary gland. These four compounds had differential effects on cellular proliferation and apoptosis in wild-type mouse and mouse model of human breast cancers. Compound 10 merits further development as a promising anticancer clinical trial candidate.
doi:10.1021/np2007878
PMCID: PMC3311758  PMID: 22304236
6.  Antitumor Agents 291 Expanded B-Ring Modification Study of 6,8,8-Triethyl Desmosdumotin B Analogues as Multidrug-Resistance Selective Agents 
Medicinal chemistry  2011;1(101):1000101.
Drug usefulnessis frequently obstructed by the incidence of the multidrug resistance (MDR) phenotype and severe adverse effects. Exploiting collateral sensitive(CS)agents (in this case also called MDR-selective agents), which selectively target only MDR cells, is an emerging and novel approach to overcome MDR in cancer treatment. In prior studies, we found that 4′-methyl-6,6,8-triethyldesmosdumotin B (4′-Me-TEDB, 2) is an MDR-selective synthetic flavonoid with significant in vitro anticancer activity against a MDR cell line (KB-Vin) but without activity against the parent cells (KB) as well as other non-MDR tumor cells. Our recent results suggest the absolute MDR-selectivity varies depending on the cell-line system. In order to explore this further and to better understand the critical pharmacophores, we have synthesized nine novel analogues of 2, which contain heteroaromatic as well ascycloalkyl B-rings. The new compounds were evaluated for cytotoxicity to explore the effect of B-ring modifications on MDR-selectivity. All analogues, except 7, 9 and 10, were identified as significant MDR-selective compounds. This observation solidifies the importance of the 5-hydroxy-6,8,8-trialkyl-4H-chromene-4,7(8H)-dione skeleton (AC-ring system) for the pharmacological activity and establishes the B-ring as less critical for the broader spectrum MDR-selectivity. Notably, 3-furanyl (3)and 2-thiophenyl (6)analogues displayed substantial MDR–selectivity with KB/KB-Vin ratios of >12 and 16, respectively. Furthermore, 3 and 6 also exhibited MDR–selectivity in a second set of paired cell lines, the MDR/non-MDR hepatoma-cell system. Interestingly, a cyclohexyl analogue (11) showed moderate inhibition of A549, DU145, and PC-3 cell growth, while the other compounds were inactive. These new findings are discussed in terms of current understanding of mechanism and structure–activity relationship (SAR) of our novel MDR-selective flavonoids.
doi:10.4172/2161-0444.1000101
PMCID: PMC3537172  PMID: 23293751
Triethyldesmosdumotin B; Multi-drug resistance; MDR-selectivity (collateral sensitivity); Heteroaromatic ring; Cycloalkyl ring
7.  Stelleralides A-C, Novel Potent Anti-HIV Daphnane-Type Diterpenoids from Stellera chamaejasme L 
Organic letters  2011;13(11):2904-2907.
Three novel 1-alkyldaphnane-type diterpenes, stelleralides A–C (4–6), and five known compounds were isolated from the roots of Stellera chamaejasme L. The structures of 4–6 were elucidated by extensive spectroscopic analyses. Several isolated compounds showed potent anti-HIV activity. Compound 4 showed extremely potent anti-HIV activity (EC90 0.40 nM) with the lowest cytotoxicity (IC50 4.3 μM), and appears to be a promising compound for development into anti-AIDS clinical trial candidates.
doi:10.1021/ol200889s
PMCID: PMC3109985  PMID: 21561135
8.  Antitumor agents 287. Substituted 4-amino-2H-pyran-2-one (APO) analogs reveal a new scaffold from neo-tanshinlactone with in vitro anticancer activity 
4-Amino-2H-benzo[h]chromen-2-one (ABO) and 4-amino-7,8,9,10-tetrahydro-2H-benzo[h]chromen-2-one (ATBO) analogs were found to be significant in vitro anticancer agents in our previous research. Our continuing study has now discovered a new simplified (monocyclic rather than tricyclic) class of cytotoxic agents, 4-amino-2H-pyran-2-one (APO) analogs. By incorporating various substituents on the pyranone ring, we have established preliminary structure-activity relationships (SAR). Analogs 19, 20, 23, and 26–30 displayed significant tumor cell growth inhibitory activity in vitro. The most active compound 27 exhibited ED50 values of 0.059–0.090 μM.
doi:10.1016/j.bmcl.2011.02.084
PMCID: PMC3072684  PMID: 21420855
4-Amino-2H-pyran-2-one (APO) analogs; Neo-tanshinlactone; Cytotoxicity
9.  Antitumor Agents 284. New Desmosdumotin B Analogues with Bicyclic B-ring as Cytotoxic and Antitubulin Agents 
Journal of medicinal chemistry  2011;54(5):1244-1255.
We previously reported that the biological activity of analogues of desmosdumotin B (1) was dramatically changed depending on the B-ring system. A naphthalene B-ring analogue 3 exerted potent in vitro activity against a diverse panel of human tumor cell lines with GI50 values of 0.8–2.1 μM. In contrast, 1-analogues with a phenyl B-ring showed unique selective activity against P-glycoprotein (P-gp) overexpressing multidrug resistance cell line. We have now prepared and evaluated 1-analogues with bicyclic or tricyclic aromatic B-ring systems as in vitro inhibitors of human cancer cell line proliferation. Among all synthesized derivatives, 21 with a benzo[b]thiophenyl B-ring was highly active, with GI50 values of 0.06–0.16 μM, and this activity was not influenced by overexpression of P-gp. Furthermore, 21 inhibited tubulin assembly in vitro with an IC 50 value of 2.0 μM and colchicine binding by 78% as well as cellular microtubule polymerization and spindle formation.
doi:10.1021/jm1011947
PMCID: PMC3048907  PMID: 21284385
10.  Antitumor Agents 283. Further Elaboration of Desmosdumotin C Analogs as Potent Antitumor Agents: Activation of Spindle Assembly Checkpoint as Possible Mode of Action 
Bioorganic & medicinal chemistry  2011;19(5):1816-1822.
In our ongoing study of the desmosdumotin C (1) series, twelve new analogues, 21–32, mainly with structural modifications in ring-A, were prepared and evaluated for in vitro antiproliferative activity against several human tumor cell lines. Among them, the 4′-iodo-3,3,5-tripropyl-4-methoxy analogue (31) showed significant antiproliferative activity against multiple human tumor cell lines with ED50 values of 1.1–2.8 μM. Elongation of the C-3 and C-5 carbon chains reduced activity relative to propyl substituted analogues; however, activity was still better than that of natural compound 1. Among analogues with various ether groups on C-4, compounds with methyl (2) and propyl (26) ethers inhibited cell growth of multiple tumor cells lines, while 28 with an isobutyl ether showed selective antiproliferative activity against lung cancer A549 cells (ED50 1.7 μM). The gene expression profiles showed that 3 may modulate the spindle assembly checkpoint (SAC) and chromosome separation, and thus, arrest cells at the G2/M-phase.
doi:10.1016/j.bmc.2011.01.001
PMCID: PMC3064560  PMID: 21296579
Desmosdumotin C; Antiproliferative activity; Human tumor cell lines; Microarray
11.  Antitumor agents 279. Structure-activity relationship and in vivo studies of novel 2-(furan-2-yl)naphthalen-1-ol (FNO) analogs as potent and selective anti-breast cancer agents 
In our ongoing modification study of neo-tanshinlactone (1), we discovered 2-(furan-2-yl)naphthalen-1-ol (FNO) derivatives 3 and 4 as a new class of anti-tumor agents. To explore structure-activity relationships (SAR) of this scaffold, 18 new analogs, 6–12 and 14–24, were designed and synthesized. The C11-esters 7 and 12 displayed broad anti-tumor activity (ED50 1.1–4.3 µg/mL against seven cancer cell lines), while C11-hydroxymethyl 14 showed unique selectivity against the SKBR-3 breast cancer cell line (ED50 0.73 µg/mL). Compounds 15 and 22 displayed potent and selective anti-breast tumor activity (ED50 1.7 and 0.85 µg/mL, respectively, against MDA-MB-231). The SAR results demonstrated that the substitutions from the ring-opened lactone ring C of 1 are critical to the anti-tumor potency as well as the apparent tumor-tissue type selectivity. Treatment with 3 in Brca1f11/f11p53f5&6/f5&6Crec mice models significantly inhibited the proliferation of mammary epithelial cells and branching of mammary glands.
doi:10.1016/j.bmcl.2010.11.077
PMCID: PMC3011818  PMID: 21147529
2-(furan-2-yl)naphthalen-1-ol analogs; structure-activity relationships; anti-breast tumor agents
12.  Antitumor Agents 281. Design, Synthesis, and Biological Activity of Substituted 4-Amino-7,8,9,10-tetrahydro-2H-benzo[h]chromen-2-one Analogs (ATBO) as Potent In Vitro Anticancer Agents 
In our exploration of new biologically active chemical entities, we designed and synthesized a novel class of antitumor agents, substituted 4-amino-7,8,9,10-tetrahydro-2H-benzo[h]chromen-2-one (ATBO) analogs. We evaluated their cytotoxic activity against seven human tumor cell lines from different tissues, and established preliminary structure-activity relationships (SAR). All analogues, except 8, 9, and 25-27, displayed potent tumor cell growth inhibitory activity. Especially, compounds 15 and 33 with a 4-methoxyphenyl group at position C-4 were extremely potent with ED50 values of 0.008-0.064 μM and 0.035-0.32 μM, respectively. Compound 15 was the most potent analog compared with structurally related neo-tanshinlactone (e.g., 1) and 4-amino-2H-benzo[h]chromen-2-one (ABO, e.g., 4) analogs, and thus merits further exploration as an anti-cancer drug candidate.
doi:10.1016/j.bmcl.2010.10.074
PMCID: PMC3053047  PMID: 21087859
4-Amino-7,8,9,10-tetrahydro-2H-benzo[h]chromen-2-ones (ATBO); Cytotoxic activity; Neo-tanshinlactone
13.  Antitumor Agents 282. 2′-(R)-O-Acetylglaucarubinone, a Quassinoid from Odyendyea gabonensis as a Potential Anti-breast and Anti-ovarian Cancer Agent 
Journal of natural products  2010;73(9):1553-1558.
A new quassinoid, designated 2′-(R)-O-acetylglaucarubinone (1), and seven known quassinoids (2–8) were isolated, using bioactivity-guided separation, from the bark of Odyendyea gabonensis (Pierre) Engler [syn. Quassia gabonensis Pierre (Simaroubaceae)]. The structure of 1 was determined by spectroscopic analysis, and by semi-synthesis from glaucarubolone. Complete 1H and 13C NMR assignments of compounds 1–8 were also established from detailed analysis of two-dimensional NMR spectra, and the reported configurations in odyendene (7) and odyendane (8) were corrected. Compound 1 showed potent cytotoxicity against multiple cancer cell lines. Further investigation using various types of breast and ovarian cancer cell lines suggested that 1 does not target the estrogen receptor (ER) or progesterone receptor (PR). When tested against mammary epithelial proliferation in vivo using a Brca1/p53-deficient mice model, 1 also caused significant reduction in mammary duct branching.
doi:10.1021/np100406d
PMCID: PMC2954497  PMID: 20738103
14.  Antitumor Agents 280. Multidrug Resistance-Selective Desmosdumotin B Analogues 
Journal of medicinal chemistry  2010;53(18):6699-6705.
6,6,8-Triethyldesmosdumotin B (2) was discovered as a MDR–selective flavonoid with significant in vitro anticancer activity against a multi-drug resistant (MDR) cell line (KB-VIN) but without activity against the parent cells (KB). Additional 2-analogues were synthesized and evaluated to determine the effect of B-ring modifications on MDR-selectivity. Analogues with a B-ring Me (3) or Et (4) group had substantially increased MDR–selectivity. Three new disubstituted analogues, 35, 37 and 49, also had high collateral sensitivity (CS) indices of 273, 250 and 100, respectively. Furthermore, 2–4 also displayed MDR-selectivity in an MDR hepatoma-cell system. While 2–4 showed either no or very weak inhibition of cellular P-glycoprotein (P-gp) activity, they either activated or inhibited the actions of the first generation P-gp inhibitors verapamil or cyclosporin, respectively.
doi:10.1021/jm100846r
PMCID: PMC2945214  PMID: 20735140
15.  Antitumor Agents 278. 4-Amino-2H-benzo[h]chromen-2-one (ABO) Analogs as Potent In Vitro Anticancer Agents 
4-Amino-2H-benzo[h]chromen-2-one (ABO) analogs were designed, synthesized, and evaluated for cytotoxic activity. Among all 4-substituted ABO analogs, cyclohexyl (12), N-methoxy-N-methylacetamide (14), and various aromatic derivatives (15-25 and 27) exhibited promising cell growth inhibitory activity with ED50 values of 0.01-2.1 μM against all tested tumor cell lines. The 4′-methoxyphenyl derivative (18) and 3′-methylphenyl derivative (24) showed the most potent antitumor activity against a broad range of cancer cell lines with ED50 values of 0.01-0.17 μM. Preliminary SAR results indicated that substitutions on nitrogen are critical to the antitumor potency.
doi:10.1016/j.bmcl.2010.05.079
PMCID: PMC2917187  PMID: 20542429
4-Amino-2H-benzo[h]chromen-2-one analogs (ABO); cytotoxic activity; structure-activity relationships
16.  Antitumor agents 273.† Design and synthesis of N-alkyl-thiocolchicinoids as potential antitumor agents 
As a part of our continuing study of colchicinoids as therapeutically useful antitumor drugs, thiocolchicine derivatives, including their phosphate and other water soluble salts, were synthesized and evaluated for inhibition of tubulin polymerization and for in vitro cytotoxicity. Three compounds, 7, 10, and 11, showed potent inhibition of tubulin assembly (IC50 = 0.88 – 1.1 μM). In addition, compound 7, a water soluble succinic acid salt of N-deacetylthiocolchicine (4), showed potent cytotoxicity against a panel of tumor cell lines, suggesting it might be a potential lead to be developed as a therapeutic antitumor agent. Compound 8, a water soluble succinic acid salt of N,N-dimethyl-N-deacetylthiocolchicine (5), showed selective activities against HCT-8 and SK-BR-3 cells. N,N-Diethyl-N-deacetylthiocolchicine (6) seemed not to be a substrate for the P-gp efflux pump, based on the similar ED50 values obtained against P-gp over-expressing KBvin (0.0146 μg/mL) cells and the parent KB (0.0200 μg/mL) cell line.
doi:10.1016/j.bmcl.2010.05.081
PMCID: PMC2933066  PMID: 20542428
N-Alkylthiocolchinoids; Antitumor agents; Tubulin polymerization
17.  Antitumor Agents. 272. Structure–Activity Relationships and In Vivo Selective Anti-Breast Cancer Activity of Novel Neo-tanshinlactone Analogs 
Journal of medicinal chemistry  2010;53(5):2299-2308.
Neo-tanshinlactone (1) and its previously reported analogs, such as 2, are potent and selective in vitro anti-breast cancer agents. The synthetic pathway to 2 was optimized from seven to five steps, with a better overall yield. Structure–activity relationships studies on these compounds revealed some key molecular determinants for this family of anti-breast agents. Several derivatives (19-21 and 24) exerted potent and selective anti-breast cancer activity with IC50 values of 0.3, 0.2, 0.1 and 0.1 μg/mL, respectively, against the ZR-75-1 cell lines. Compound 24 was two- to three-fold more potent than 1 against SK-BR-3 and ZR-75-1. Importantly, 21 exhibited high selectivity; it was 23 times more active against ZR-75-1 than MCF-7. Compound 20 had an approximately 12-fold ratio of SK-BR-3/MCF-7 selectivity. In addition, analog 2 showed potent activity against a ZR-75-1 xenograft model, but not PC-3 and MDA-MB-231 xenografts, as well as high selectivity against breast cancer cell line compared with normal breast tissue-derived cell lines. Further development of lead compounds 19-21 and 24 as clinical trial candidates is warranted.
doi:10.1021/jm1000858
PMCID: PMC2849726  PMID: 20148565
18.  Cancer preventive agents 10. Prenylated dehydrozingerone analogs as potent chemopreventive agents 
Dehydrozingerone analogs and related compounds were screened as potential antitumor promoters by using the in vitro short-term 12-O-tetradecanphorbol-13-acetate (TPA)-induced Epstein-Barr virus early antigen (EBV-EA) activation assay. Among 40 synthesized compounds, the prenylated analogs 16 and 34–36 showed the most significant and promising activity (100% inhibition of activation at 1×10 3 mol ratio/TPA, and 82–80%, 37–35%, 13–11% inhibition at 5×102, 1×102, 1×10 mol ratio/TPA, respectively) in this screening. Their activity profiles were comparable to that of the reference standard curcumin. While a prenyl moiety conferred potent chemopreventive activity, an extended prenyl unit such as a farnesyl moiety did not improve activity. Because in vitro inhibitory effects in this assay generally correlate well with in vivo inhibitory effects on tumor promotion, our results strongly suggested that prenylated 16 and 34–36 are likely to be promising antitumor promoters.
doi:10.1080/10286021003591617
PMCID: PMC2856110  PMID: 20390770
dehydrozingerone; antitumor-promoting effect; Epstein-Barr virus; two-stage carcinogenesis
19.  Antitumor Agents. 271. Total Synthesis and Evaluation of Brazilein and Analogs as Anti-inflammatory and Cytotoxic Agents 
The first total synthesis of the naturally occurring tetracyclic homoisoflavonoid brazilein (1) and 14 new analogs (1a–n) is reported. Target compounds and intermediates were assayed for anti-inflammatory effects on superoxide anion generation and elastase release by human neutrophils in response to fMLP/CB, and for cytotoxic activity against nasopharyngeal (KB), vincristine-resistant nasopharyngeal (KBvin), lung (A549) and prostate (DU-145) human cancer cell lines. The most active compound 1b showed potent effects on superoxide anion generation and elastase release with IC50 values of 1.2 and 1.9 µM, respectively, and was 65 times more potent than phenylmethylsulfonyl fluoride (PMSF), the positive control, in the latter assay. Additionally, 1b exhibited broad spectrum in vitro anticancer activity with IC50 values of 6–11 µM against the four tested cancer cell lines.
doi:10.1016/j.bmcl.2009.12.041
PMCID: PMC2831747  PMID: 20036537
homoisoflavonoid; brazilein; anti-inflammatory; cytotoxic
20.  Antitumor Agents 270. Novel Substituted 6-Phenyl-4H-furo[3,2-c]pyran-4-one Derivatives as Potent and Highly Selective Anti-Breast Cancer Agents 
6-Phenyl-4H-furo[3,2-c]pyran-4-one derivatives based on neo-tashinlactone (1) were synthesized and evaluated as novel anti-breast cancer agents. Compounds 10-13, 23, 25, and 27 showed potent inhibition against the SK-BR-3 breast cancer cell line. Importantly, 25 and 27 showed the highest cancer cell line selectivity, being approximately 100- to 250-fold more potent against SK-BR-3 (ED50 0.28 and 0.44 μM, respectively) compared with other cancer cell lines tested. In addition, 25 displayed low cytotoxicity against normal breast cell lines 184A1 and MCF10A. Compounds 25 and 27 merit further investigation in our continuing program to generate and develop selective anti-breast cancer agents.
doi:10.1016/j.bmc.2009.11.049
PMCID: PMC2821697  PMID: 20034799
21.  Antitumor Agents. 269. Non-Aromatic Ring-A Neo-tanshinlactone Analog, TNO, as a New Class of Potent Antitumor Agents 
Tetrahydroneotanshinlactone (TNT) and tetrahydronaphthalene-1-ol (TNO) derivatives were designed, synthesized, and evaluated for cytotoxic activity. The TNO derivatives were found to be a promising novel class of in vitro antitumor agents. The cyclohexene ring-A could dramatically affect the antitumor activity and selectivity. Compound 20 showed the highest potency with ED50 values of 0.7 and 1.7 µM against SK-BR-3 and ZR-75-1 breast cancer cell lines, respectively.
doi:10.1016/j.bmcl.2009.09.092
PMCID: PMC2782515  PMID: 19819136
Tetrahydronaphthalene-1-ol (TNO) analogs; Tetrahydroneotanshinlactone (TNT) analogs; Cytotoxicity; Breast cancer
22.  Cancer Preventive Agents 9. Betulinic Acid Derivatives as Potent Cancer Chemopreventive Agents † 
C-3 Esterifications of betulinic acid (BA, 1) and its A-ring homolog, ceanothic acid (CA, 2), were carried out to provide sixteen terpenoids, 4-19, including nine new compounds (4-12). All synthesized compounds were evaluated in an in vitro antitumor-promoting assay using the Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells. Among them, compounds 4-6, 11-14, 16, and 17 displayed remarkable inhibitory effects of EBV-EA activation. BA analog 6, which contains a prenyl-like group, showed the most potent inhibitory effect (100, 76, 37, and 11% inhibition of EBA activation at 1000, 500, 100 and 10 mol ratio/TPA, respectively, with IC50 value of 285 mol ratio/32pmol TPA). Compound 6 merits further development as a cancer preventive agent.
doi:10.1016/j.bmcl.2009.05.050
PMCID: PMC2747314  PMID: 19481937
Betulinic acid; Ceanothic acid; Antitumor-promoter; Cancer preventive agents; Epstein-Barr virus
23.  Cytotoxic Calanquinone A from Calanthe arisanensis and Its First Total Synthesis 
Calanquinone A (1) was isolated from an EtOAc-soluble extract of Calanthe arisanensis through bioassay-guided fractionation. Its structure was identified by spectroscopic methods. Compound 1 showed potent cytotoxicity (EC50 < 0.5 µg/mL) against lung (A549), prostate (PC-3 and DU145), colon (HCT-8), breast (MCF7), nasopharyngeal (KB), and vincristine-resistant nasopharyngeal (KB-VIN) cancer cell lines, and interestingly, showed an improved drug resistance profile compared to paclitaxel. The total synthesis of 1 was also achieved and reported herein.
doi:10.1016/j.bmcl.2008.06.099
PMCID: PMC2551759  PMID: 18640035
24.  Anti-AIDS Agents 73: Structure-Activity Relationship Study and Asymmetric Synthesis of 3-O-Monomethylsuccinyl Betulinic Acid Derivatives 
3-O-3′(or 2′)-methylsuccinyl-betulinic acid (MSB) derivatives were separated by using recycle HPLC. The structures of four isomers were assigned by NMR and asymmetric synthesis. 3-O-3′S-Methylsuccinyl-betulinic acid (3′S-MSB, 4) exhibited potent anti-HIV activity with an EC50 value of 0.0087 μM and a TI value of 6.3×103, which is comparable to the data for bevirimat (DSB, PA-457), a current clinical trials drug that was also derived from betulinic acid. The anti-HIV potency of 4 was slightly better than that of AZT.
doi:10.1016/j.bmcl.2007.09.081
PMCID: PMC2140232  PMID: 17935987
25.  First Total Synthesis of Protoapigenone and its Analogs as Potent Cytotoxic Agents 
Journal of medicinal chemistry  2007;50(16):3921-3927.
Protoapigenone (1), isolated from Thelypteris torresiana, previously showed significant cytotoxic activity against five human cancer cell lines. In a continued structure-activity relationship study, the first total synthesis and modification of 1 were achieved. All synthesized compounds and related intermediates were evaluated for cytotoxic activity against five human cancer cell lines, HepG2, Hep3B, MDA-MB-231, MCF-7 and A549. Among them, 24 showed 2.2-14.2 fold greater cytotoxicity than 1 and naphthyl A-ring analogs remarkably enhanced the activity.
doi:10.1021/jm070363a
PMCID: PMC2587018  PMID: 17622129

Results 1-25 (30)