PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (37)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
1.  Stepwise enhancement of catalytic performance of haloalkane dehalogenase LinB towards β-hexachlorocyclohexane 
AMB Express  2014;4:72.
Two haloalkane dehalogenases, LinBUT and LinBMI, each with 296 amino acid residues, exhibit only seven amino acid residue differences between them, but LinBMI’s catalytic performance towards β-hexachlorocyclohexane (β-HCH) is considerably higher than LinBUT’s. To elucidate the molecular basis governing this difference, intermediate mutants between LinBUT and LinBMI were constructed and kinetically characterized. The activities of LinBUT-based mutants gradually increased by cumulative mutations into LinBUT, and the effects of the individual amino acid substitutions depended on combination with other mutations. These results indicated that LinBUT’s β-HCH degradation activity can be enhanced in a stepwise manner by the accumulation of point mutations.
doi:10.1186/s13568-014-0072-5
PMCID: PMC4230811  PMID: 25401073
β-Hexachlorocyclohexane; Xenobiotics; Biodegradation; Haloalkane dehalogenase; Protein evolution
2.  Crystallization and preliminary X-ray analysis of the haloalkane dehalogenase DatA from Agrobacterium tumefaciens C58 
The haloalkane dehalogenase DatA from A. tumefaciens C58 was expressed, purified and crystallized by the sitting-drop vapour-diffusion method. X-ray diffraction data were collected to 1.70 Å resolution.
Haloalkane dehalogenases are enzymes that catalyze the hydrolytic reaction of a wide variety of haloalkyl substrates to form the corresponding alcohol and hydrogen halide products. DatA from Agrobacterium tumefaciens C58 is a haloalkane dehalogenase that has a unique pair of halide-binding residues, asparagine (Asn43) and tyrosine (Tyr109), instead of the asparagine and tryptophan that are conserved in other members of the subfamily. DatA was expressed in Escherichia coli, purified and crystallized using the sitting-drop vapour-diffusion method with a reservoir solution consisting of 0.1 M CHES pH 8.6, 1.0 M potassium sodium tartrate, 0.2 M lithium sulfate, 0.01 M barium chloride. X-ray diffraction data were collected to 1.70 Å resolution. The space group of the crystal was determined as the primitive tetragonal space group P422, with unit-cell parameters a = b = 123.7, c = 88.1 Å. The crystal contained two molecules in the asymmetric unit.
doi:10.1107/S1744309112013942
PMCID: PMC3370902  PMID: 22684062
haloalkane dehalogenases; bioremediation
3.  Complete Genome Sequence of Pseudomonas sp. Strain TKP, Isolated from a γ-Hexachlorocyclohexane-Degrading Mixed Culture 
Genome Announcements  2014;2(1):e01241-13.
Pseudomonas sp. strain TKP does not degrade γ-hexachlorocyclohexane (γ-HCH), but it persistently coexists with the γ-HCH-degrading Sphingobium sp. strain TKS in a mixed culture enriched by γ-HCH. Here, we report the complete genome sequence of strain TKP, which consists of one circular chromosome with a size of 7 Mb.
doi:10.1128/genomeA.01241-13
PMCID: PMC3907731  PMID: 24482516
4.  Complete Genome Sequence of Pseudomonas aeruginosa MTB-1, Isolated from a Microbial Community Enriched by the Technical Formulation of Hexachlorocyclohexane 
Genome Announcements  2014;2(1):e01130-13.
Pseudomonas aeruginosa MTB-1 does not degrade gamma-hexachlorocyclohexane (γ-HCH), but this bacterium persistently coexists with a γ-HCH-degrading strain, Sphingomonas sp. MM-1, in a microbial community enriched by the technical formulation of HCH. Here we report the complete MTB-1 genome sequence, with a 6.6-Mb circular chromosome.
doi:10.1128/genomeA.01130-13
PMCID: PMC3900889  PMID: 24459257
5.  Complete Genome Sequence of the Thermophilic Polychlorinated Biphenyl Degrader Geobacillus sp. Strain JF8 (NBRC 109937) 
Genome Announcements  2014;2(1):e01213-13.
Geobacillus sp. strain JF8 (NBRC 109937) utilizes biphenyl and naphthalene as sole carbon sources and degrades polychlorinated biphenyl (PCB) at 60°C. Here, we report the complete nucleotide sequence of the JF8 genome (a 3,446,630-bp chromosome and a 39,678-bp plasmid). JF8 has the smallest genome among the known PCB degraders.
doi:10.1128/genomeA.01213-13
PMCID: PMC3900906  PMID: 24459274
6.  Crystal Structure and Site-Directed Mutagenesis Analyses of Haloalkane Dehalogenase LinB from Sphingobium sp. Strain MI1205 
Journal of Bacteriology  2013;195(11):2642-2651.
The enzymes LinBUT and LinBMI (LinB from Sphingobium japonicum UT26 and Sphingobium sp. MI1205, respectively) catalyze the hydrolytic dechlorination of β-hexachlorocyclohexane (β-HCH) and yield different products, 2,3,4,5,6-pentachlorocyclohexanol (PCHL) and 2,3,5,6-tetrachlorocyclohexane-1,4-diol (TCDL), respectively, despite their 98% identity in amino acid sequence. To reveal the structural basis of their different enzymatic properties, we performed site-directed mutagenesis and X-ray crystallographic studies of LinBMI and its seven point mutants. The mutation analysis revealed that the seven amino acid residues uniquely found in LinBMI were categorized into three groups based on the efficiency of the first-step (from β-HCH to PCHL) and second-step (from PCHL to TCDL) conversions. Crystal structure analyses of wild-type LinBMI and its seven point mutants indicated how each mutated residue contributed to the first- and second-step conversions by LinBMI. The dynamics simulation analyses of wild-type LinBMI and LinBUT revealed that the entrance of the substrate access tunnel of LinBUT was more flexible than that of LinBMI, which could lead to the different efficiencies of dehalogenation activity between these dehalogenases.
doi:10.1128/JB.02020-12
PMCID: PMC3676048  PMID: 23564170
7.  Design and Experimental Application of a Novel Non-Degenerate Universal Primer Set that Amplifies Prokaryotic 16S rRNA Genes with a Low Possibility to Amplify Eukaryotic rRNA Genes 
The deep sequencing of 16S rRNA genes amplified by universal primers has revolutionized our understanding of microbial communities by allowing the characterization of the diversity of the uncultured majority. However, some universal primers also amplify eukaryotic rRNA genes, leading to a decrease in the efficiency of sequencing of prokaryotic 16S rRNA genes with possible mischaracterization of the diversity in the microbial community. In this study, we compared 16S rRNA gene sequences from genome-sequenced strains and identified candidates for non-degenerate universal primers that could be used for the amplification of prokaryotic 16S rRNA genes. The 50 identified candidates were investigated to calculate their coverage for prokaryotic and eukaryotic rRNA genes, including those from uncultured taxa and eukaryotic organelles, and a novel universal primer set, 342F-806R, covering many prokaryotic, but not eukaryotic, rRNA genes was identified. This primer set was validated by the amplification of 16S rRNA genes from a soil metagenomic sample and subsequent pyrosequencing using the Roche 454 platform. The same sample was also used for pyrosequencing of the amplicons by employing a commonly used primer set, 338F-533R, and for shotgun metagenomic sequencing using the Illumina platform. Our comparison of the taxonomic compositions inferred by the three sequencing experiments indicated that the non-degenerate 342F-806R primer set can characterize the taxonomic composition of the microbial community without substantial bias, and is highly expected to be applicable to the analysis of a wide variety of microbial communities.
doi:10.1093/dnares/dst052
PMCID: PMC3989492  PMID: 24277737
16S rRNA; primer design; non-degenerate primer; microbial community
8.  Complete Genome Sequence of Ralstonia pickettii DTP0602, a 2,4,6-Trichlorophenol Degrader 
Genome Announcements  2013;1(6):e00903-13.
Ralstonia pickettii strain DTP0602 utilizes 2,4,6-trichlorophenol as its sole carbon and energy source. Here, we report the complete genome sequence of strain DTP0602, which comprises three chromosomes and no plasmids. We also found that the two had gene clusters responsible for the degradation of 2,4,6-trichlorophenol are located on the 2.9-Mb chromosome 2.
doi:10.1128/genomeA.00903-13
PMCID: PMC3814637  PMID: 24179121
9.  Complete Genome Sequence of Acidovorax sp. Strain KKS102, a Polychlorinated-Biphenyl Degrader 
Journal of Bacteriology  2012;194(24):6970-6971.
We report the complete genome sequence of Acidovorax sp. strain KKS102, a polychlorinated-biphenyl-degrading strain isolated from a soil sample in Tokyo. The genome contains a single circular 5,196,935-bp chromosome and no plasmids.
doi:10.1128/JB.01848-12
PMCID: PMC3510582  PMID: 23209225
10.  Conjugal Transfer of Polychlorinated Biphenyl/Biphenyl Degradation Genes in Acidovorax sp. Strain KKS102, Which Are Located on an Integrative and Conjugative Element 
Journal of Bacteriology  2012;194(16):4237-4248.
A polychlorinated biphenyl (PCB)/biphenyl degradation gene cluster in Acidovorax sp. strain KKS102, which is very similar to that in Tn4371 from Cupriavidus oxalaticus A5, was transferred to several proteobacterial strains by conjugation. The mobilized DNA fragment consisted of 61,807 bp and carried genes for mating-pair formation (mpf), DNA transfer (dtr), integrase (int), and replication-partition proteins (rep-parAB). In the transconjugants, transferred DNA was integrated at ATTGCATCAG or similar sequences. The circular-form integrative and conjugative element (ICE) was detected by PCR, and quantitative PCR analyses revealed that, in KKS102 cells, the ratio of the circular form to the integrated form was very low (approximately 10−5). The circular form was not detected in a mutant of the int gene, which was located at the extreme left and transcribed in the inward direction, and the level of int transcriptional activity was much higher in the circular form than in the integrated form. These findings clearly demonstrated that the genes for PCB/biphenyl degradation in KKS102 cells are located on an ICE, which was named ICEKKS1024677. Comparisons of similar ICE-like elements collected from the public database suggested that those of beta- and gammaproteobacteria were distinguishable from other ICE-like elements, including those in alphaproteobacteria, with respect to the gene composition and gene organization.
doi:10.1128/JB.00352-12
PMCID: PMC3416211  PMID: 22685277
11.  Biochemical Characteristics of the Novel Haloalkane Dehalogenase DatA, Isolated from the Plant Pathogen Agrobacterium tumefaciens C58 ▿ †  
We report the biochemical characterization of a novel haloalkane dehalogenase, DatA, isolated from the plant pathogen Agrobacterium tumefaciens C58. DatA possesses a peculiar pair of halide-stabilizing residues, Asn-Tyr, which have not been reported to play this role in other known haloalkane dehalogenases. DatA has a number of other unique characteristics, including substrate-dependent and cooperative kinetics, a dimeric structure, and excellent enantioselectivity toward racemic mixtures of chiral brominated alkanes and esters.
doi:10.1128/AEM.02109-10
PMCID: PMC3067286  PMID: 21193677
12.  Crystallization and preliminary X-ray analysis of γ-­hexachlorocyclohexane dehydrochlorinase LinA from Sphingobium japonicum UT26 
Purification and crystallization of LinA allowed the collection of data to 2.25 Å resolution.
LinA from Sphingobium japonicum UT26 catalyzes two steps of dehydrochlorination from γ-hexachlorocyclohexane (γ-HCH) to 1,3,4,6-tetrachloro-1,4-cyclohexadiene (1,4-TCDN) via γ-pentachlorocyclohexene (γ-PCCH). LinA was crystallized by the sitting-drop vapour-diffusion method using PEG 3350 as the precipitant. The crystals belonged to space group P41 or P43, with unit-cell parameters a = b = 68.9, c = 101.9 Å, and diffracted X-rays to 2.25 Å resolution. The crystal contained three molecules in the asymmetric unit.
doi:10.1107/S1744309109026645
PMCID: PMC2720343  PMID: 19652349
LinA; γ-hexachlorocyclohexane dehydrochlorinase; Sphingobium japonicum UT26
13.  Complete Genome Sequence of the Representative γ-Hexachlorocyclohexane-Degrading Bacterium Sphingobium japonicum UT26 ▿  
Journal of Bacteriology  2010;192(21):5852-5853.
Sphingobium japonicum strain UT26 utilizes γ-hexachlorocyclohexane (γ-HCH), a man-made chlorinated pesticide that causes serious environmental problems due to its toxicity and long persistence, as a sole source of carbon and energy. Here, we report the complete genome sequence of UT26, which consists of two chromosomes and three plasmids. The 15 lin genes involved in γ-HCH degradation are dispersed on the two chromosomes and one of the three plasmids.
doi:10.1128/JB.00961-10
PMCID: PMC2953701  PMID: 20817768
14.  Crystallization and preliminary X-ray analysis of a novel haloalkane dehalogenase DbeA from Bradyrhizobium elkani USDA94 
A novel haloalkane dehalogenase DbeA from B. elkani USDA94 and its mutant variant DbeA1 were crystallized and diffraction data were collected to 2.2 Å resolution.
A novel enzyme, DbeA, belonging to the haloalkane dehalogenase family (EC 3.8.1.5) was isolated from Bradyrhizobium elkani USDA94. This halo­alkane dehalogenase is closely related to the DbjA enzyme from B. japonicum USDA110 (71% sequence identity), but has different biochemical properties. DbeA is generally less active and has a higher specificity towards brominated and iodinated compounds than DbjA. In order to understand the altered activity and specificity of DbeA, its mutant variant DbeA1, which carries the unique fragment of DbjA, was also constructed. Both wild-type DbeA and DbeA1 were crystallized using the sitting-drop vapour-diffusion method. The crystals of DbeA belonged to the primitive orthorhombic space group P212121, while the crystals of DbeA1 belonged to the monoclinic space group C2. Diffraction data were collected to 2.2 Å resolution for both DbeA and DbeA1 crystals.
doi:10.1107/S1744309109007039
PMCID: PMC2664758  PMID: 19342778
DbeA; haloalkane dehalogenases; Bradyrhizobium elkani USDA94
16.  Complete Nucleotide Sequence of TOL Plasmid pDK1 Provides Evidence for Evolutionary History of IncP-7 Catabolic Plasmids▿ †  
Journal of Bacteriology  2010;192(17):4337-4347.
To understand the mechanisms for structural diversification of Pseudomonas-derived toluene-catabolic (TOL) plasmids, the complete sequence of a self-transmissible plasmid pDK1 with a size of 128,921 bp from Pseudomonas putida HS1 was determined. Comparative analysis revealed that (i) pDK1 consisted of a 75.6-kb IncP-7 plasmid backbone and 53.2-kb accessory gene segments that were bounded by transposon-associated regions, (ii) the genes for conjugative transfer of pDK1 were highly similar to those of MOBH group of mobilizable plasmids, and (iii) the toluene-catabolic (xyl) gene clusters of pDK1 were derived through homologous recombination, transposition, and site-specific recombination from the xyl gene clusters homologous to another TOL plasmid, pWW53. The minireplicons of pDK1 and its related IncP-7 plasmids, pWW53 and pCAR1, that contain replication and partition genes were maintained in all of six Pseudomonas strains tested, but not in alpha- or betaproteobacterial strains. The recipient host range of conjugative transfer of pDK1 was, however, limited to two Pseudomonas strains. These results indicate that IncP-7 plasmids are essentially narrow-host-range and self-transmissible plasmids that encode MOBH group-related transfer functions and that the host range of IncP-7-specified conjugative transfer was, unlike the situation in other well-known plasmids, narrower than that of its replication.
doi:10.1128/JB.00359-10
PMCID: PMC2937381  PMID: 20581207
17.  Characterization of the traD Operon of Naphthalene-Catabolic Plasmid NAH7: a Host-Range Modifier in Conjugative Transfer▿ †  
Journal of Bacteriology  2008;190(19):6281-6289.
Pseudomonas putida G7 carries a naphthalene-catabolic and self-transmissible plasmid, NAH7, which belongs to the IncP-9 incompatibility group. Adjacent to the putative origin of conjugative transfer (oriT) of NAH7 are three genes, traD, traE, and traF, whose functions and roles in conjugation were previously unclear. These three genes were transcribed monocistronically and thus were designated the traD operon. Mutation of the three genes in the traD operon resulted in 10- to 105-fold decreases in the transfer frequencies of the plasmids from Pseudomonas to Pseudomonas and Escherichia coli and from E. coli to E. coli. On the other hand, the traD operon was essential for the transfer of NAH7 from E. coli to Pseudomonas strains. These results indicated that the traD operon is a host-range modifier in the conjugative transfer of NAH7. The TraD, TraE, and TraF proteins were localized in the cytoplasm, periplasm, and membrane, respectively, in strain G7 cells. Our use of a bacterial two-hybrid assay system showed that TraE interacted in vivo with other essential components for conjugative transfer, including TraB (coupling protein), TraC (relaxase), and MpfH (a channel subunit in the mating pair formation system).
doi:10.1128/JB.00709-08
PMCID: PMC2566000  PMID: 18676671
18.  Crystallization and preliminary crystallographic analysis of a haloalkane dehalogenase, DbjA, from Bradyrhizobium japonicum USDA110 
A haloalkane dehalogenase, DbjA, was crystallized by the hanging-drop vapour-diffusion method using PEG 4000 as a precipitant. The crystal belongs to the orthorhombic system, space group P21212 and diffracts to 1.75 Å resolution.
Haloalkane dehalogenases are key enzymes for the degradation of halogenated aliphatic pollutants. The haloalkane dehalogenase DbjA constitutes a novel substrate-specificity class with high catalytic activity for β-methylated haloalkanes. In order to reveal the mechanism of its substrate specificity, DbjA has been crystallized using the hanging-drop vapour-diffusion method. The best crystals were obtained using the microseeding technique with a reservoir solution consisting of 17–19.5%(w/v) PEG 4000, 0.2 M calcium acetate and 0.1 M Tris–HCl pH 7.7–8.0. The space group of the DbjA crystal is P21212, with unit-cell parameters a = 212.9, b = 117.8, c = 55.8 Å. The crystal diffracts to 1.75 Å resolution.
doi:10.1107/S1744309107008652
PMCID: PMC2330215  PMID: 17401198
haloalkane dehalogenases; biodegradation; α/β hydrolases; rhizobia
19.  Construction of Signature-tagged Mutant Library in Mesorhizobium loti as a Powerful Tool for Functional Genomics 
Rhizobia are nitrogen-fixing soil bacteria that establish endosymbiosis with some leguminous plants. The completion of several rhizobial genome sequences provides opportunities for genome-wide functional studies of the physiological roles of many rhizobial genes. In order to carry out genome-wide phenotypic screenings, we have constructed a large mutant library of the nitrogen-fixing symbiotic bacterium, Mesorhizobium loti, by transposon mutagenesis. Transposon insertion mutants were generated using the signature-tagged mutagenesis (STM) technique and a total of 29 330 independent mutants were obtained. Along with the collection of transposon mutants, we have determined the transposon insertion sites for 7892 clones, and confirmed insertions in 3680 non-redundant M. loti genes (50.5% of the total number of M. loti genes). Transposon insertions were randomly distributed throughout the M. loti genome without any bias toward G+C contents of insertion target sites and transposon plasmids used for the mutagenesis. We also show the utility of STM mutants by examining the specificity of signature tags and test screenings for growth- and nodulation-deficient mutants. This defined mutant library allows for genome-wide forward- and reverse-genetic functional studies of M. loti and will serve as an invaluable resource for researchers to further our understanding of rhizobial biology.
doi:10.1093/dnares/dsn017
PMCID: PMC2575893  PMID: 18658183
Mesorhizobium loti; signature-tagged mutagenesis; mutant library; reverse genetics
20.  GenomeMatcher: A graphical user interface for DNA sequence comparison 
BMC Bioinformatics  2008;9:376.
Background
The number of available genome sequences is increasing, and easy-to-use software that enables efficient comparative analysis is needed.
Results
We developed GenomeMatcher, a stand-alone software package for Mac OS X. GenomeMatcher executes BLAST and MUMmer, and the detected similarities are displayed in two-dimensional and parallel views with similarity values indicated by color. Selection and re-computation of any subregions is easily performed and allows flexible and in-depth analysis. Furthermore, symbols for annotation data are displayed along the views, and the user can relate the genomic differences with annotation data. While bl2seq allows sub-Giga base comparison, three alignment programs, bl2seq, MAFFT and ClustalW, together with a dotmatch program allow comparative analysis of single-nucleotide level resolution. GenomeMatcher images can be saved as PDF and TIFF files for presentation. As examples of graphical ability of GenomeMatcher to show similarity in colors, we show two cases in Burkholderia and Vivrio strains that the nucleotide sequence of the second largest chromosome changes more rapidly than the largest chromosome.
Conclusion
GenomeMatcher is efficient and easy-to-use stand-alone software for in-depth comparative analysis of two sequences. GenomeMatcher is useful for detecting similarities in DNA sequences ranging in size from a few to sub-Giga bases.
doi:10.1186/1471-2105-9-376
PMCID: PMC2553346  PMID: 18793444
21.  Identification and Characterization of Genes Encoding a Putative ABC-Type Transporter Essential for Utilization of γ-Hexachlorocyclohexane in Sphingobium japonicum UT26▿ †  
Journal of Bacteriology  2007;189(10):3712-3720.
Sphingobium japonicum UT26 utilizes γ-hexachlorocyclohexane (γ-HCH) as its sole source of carbon and energy. In our previous studies, we cloned and characterized genes encoding enzymes for the conversion of γ-HCH to β-ketoadipate in UT26. In this study, we analyzed a mutant obtained by transposon mutagenesis and identified and characterized new genes encoding a putative ABC-type transporter essential for the utilization of γ-HCH in strain UT26. This putative ABC transporter consists of four components, permease, ATPase, periplasmic protein, and lipoprotein, encoded by linK, linL, linM, and linN, respectively. Mutation and complementation analyses indicated that all the linKLMN genes are required, probably as a set, for γ-HCH utilization in UT26. Furthermore, the mutant cells deficient in this putative ABC transporter showed (i) higher γ-HCH degradation activity and greater accumulation of the toxic dead-end product 2,5-dichlorophenol (2,5-DCP), (ii) higher sensitivity to 2,5-DCP itself, and (iii) higher permeability of hydrophobic compounds than the wild-type cells. These results strongly suggested that LinKLMN are involved in γ-HCH utilization by controlling membrane hydrophobicity. This study clearly demonstrated that a cellular factor besides catabolic enzymes and transcriptional regulators is essential for utilization of xenobiotic compounds in bacterial cells.
doi:10.1128/JB.01883-06
PMCID: PMC1913331  PMID: 17369300
22.  Weak Activity of Haloalkane Dehalogenase LinB with 1,2,3-Trichloropropane Revealed by X-Ray Crystallography and Microcalorimetry▿  
1,2,3-Trichloropropane (TCP) is a highly toxic and recalcitrant compound. Haloalkane dehalogenases are bacterial enzymes that catalyze the cleavage of a carbon-halogen bond in a wide range of organic halogenated compounds. Haloalkane dehalogenase LinB from Sphingobium japonicum UT26 has, for a long time, been considered inactive with TCP, since the reaction cannot be easily detected by conventional analytical methods. Here we demonstrate detection of the weak activity (kcat = 0.005 s−1) of LinB with TCP using X-ray crystallography and microcalorimetry. This observation makes LinB a useful starting material for the development of a new biocatalyst toward TCP by protein engineering. Microcalorimetry is proposed to be a universal method for the detection of weak enzymatic activities. Detection of these activities is becoming increasingly important for engineering novel biocatalysts using the scaffolds of proteins with promiscuous activities.
doi:10.1128/AEM.02416-06
PMCID: PMC1828796  PMID: 17259360
23.  Complete Nucleotide Sequence of an Exogenously Isolated Plasmid, pLB1, Involved in γ-Hexachlorocyclohexane Degradation▿  
Applied and Environmental Microbiology  2006;72(11):6923-6933.
The α-proteobacterial strain Sphingobium japonicum UT26 utilizes a highly chlorinated pesticide, γ-hexachlorocyclohexane (γ-HCH), as a sole source of carbon and energy, and haloalkane dehalogenase LinB catalyzes the second step of γ-HCH degradation in UT26. Functional complementation of a linB mutant of UT26, UT26DB, was performed by the exogenous plasmid isolation technique using HCH-contaminated soil, leading to our successful identification of a plasmid, pLB1, carrying the linB gene. Complete sequencing analysis of pLB1, with a size of 65,998 bp, revealed that it carries (i) 50 totally annotated coding sequences, (ii) an IS6100 composite transposon containing two copies of linB, and (iii) potential genes for replication, maintenance, and conjugative transfer with low levels of similarity to other homologues. A minireplicon assay demonstrated that a 2-kb region containing the predicted repA gene and its upstream region of pLB1 functions as an autonomously replicating unit in UT26. Furthermore, pLB1 was conjugally transferred from UT26DB to other α-proteobacterial strains but not to any of the β- or γ-proteobacterial strains examined to date. These results suggest that this exogenously isolated novel plasmid contributes to the dissemination of at least some genes for γ-HCH degradation in the natural environment. To the best of our knowledge, this is the first detailed report of a plasmid involved in γ-HCH degradation.
doi:10.1128/AEM.01531-06
PMCID: PMC1636184  PMID: 16963556
24.  Functional Analysis of Unique Class II Insertion Sequence IS1071 
Various xenobiotic-degrading genes on many catabolic plasmids are often flanked by two copies of an insertion sequence, IS1071. This 3.2-kb IS element has long (110-bp) terminal inverted repeats (IRs) and a transposase gene that are phylogenetically related to those of the class II transposons. However, the transposition mechanism of IS1071 has remained unclear. Our study revealed that IS1071 was only able to transpose at high frequencies in two environmental β-proteobacterial strains, Comamonas testosteroni and Delftia acidovorans, and not in any of the bacteria examined which belong to the α- and γ-proteobacteria. IS1071 was found to have the functional features of the class II transposons in that (i) the final product of the IS1071 transposition was a cointegrate of its donor and target DNA molecules connected by two directly repeated copies of IS1071, one at each junction; (ii) a 5-bp duplication of the target sequence was observed at the insertion site; and (iii) a tnpA mutation of IS1071 was efficiently complemented by supplying the wild-type tnpA gene in trans. Deletion analysis of the IS1071 IR sequences indicated that nearly the entire region of the IRs was required for its transposition, suggesting that the interaction between the transposase and IRs of IS1071 might be different from that of the other well-characterized class II transposons.
doi:10.1128/AEM.72.1.291-297.2006
PMCID: PMC1352228  PMID: 16391056
25.  Cloning, Biochemical Properties, and Distribution of Mycobacterial Haloalkane Dehalogenases 
Applied and Environmental Microbiology  2005;71(11):6736-6745.
Haloalkane dehalogenases are enzymes that catalyze the cleavage of the carbon-halogen bond by a hydrolytic mechanism. Genomes of Mycobacterium tuberculosis and M. bovis contain at least two open reading frames coding for the polypeptides showing a high sequence similarity with biochemically characterized haloalkane dehalogenases. We describe here the cloning of the haloalkane dehalogenase genes dmbA and dmbB from M. bovis 5033/66 and demonstrate the dehalogenase activity of their translation products. Both of these genes are widely distributed among species of the M. tuberculosis complex, including M. bovis, M. bovis BCG, M. africanum, M. caprae, M. microti, and M. pinnipedii, as shown by the PCR screening of 48 isolates from various hosts. DmbA and DmbB proteins were heterologously expressed in Escherichia coli and purified to homogeneity. The DmbB protein had to be expressed in a fusion with thioredoxin to obtain a soluble protein sample. The temperature optimum of DmbA and DmbB proteins determined with 1,2-dibromoethane is 45°C. The melting temperature assessed by circular dichroism spectroscopy of DmbA is 47°C and DmbB is 57°C. The pH optimum of DmbA depends on composition of a buffer with maximal activity at 9.0. DmbB had a single pH optimum at pH 6.5. Mycobacteria are currently the only genus known to carry more than one haloalkane dehalogenase gene, although putative haloalkane dehalogenases can be inferred in more then 20 different bacterial species by comparative genomics. The evolution and distribution of haloalkane dehalogenases among mycobacteria is discussed.
doi:10.1128/AEM.71.11.6736-6745.2005
PMCID: PMC1287712  PMID: 16269704

Results 1-25 (37)