PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-14 (14)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Protocadherin PCDH10, Involved in Tumor Progression, is a Frequent and Early Target of Promoter Hypermethylation in Cervical Cancer 
Genes, chromosomes & cancer  2009;48(11):983-992.
Cervical cancer (CC) is the second most common cancer in women. Currently no tractable molecular based therapeutic targets exist for patients with invasive CC and no predictive markers of risk assessment for progression of precancerous lesions are identified. New molecular insights into CC pathogenesis are urgently needed. Towards this goal, we first determined the copy number alterations of chromosome 4 and then examined the role of PCDH10 mapped to 4q28 as a candidate tumor suppressor gene. We identified monosomy 4 in 47% of 81 invasive CC studied by SNP array and found that 91% of 130 invasive CC harboring methylation in the promoter region of the PCDH10 gene. We then showed that aberrant promoter hypermethylation of PCDH10 is associated with down-regulation of gene expression and cell lines exposed to demethylating agent resulted in profound reactivated gene expression. We also showed that the promoter methylation in the PCDH10 gene occurs at an earliest identifiable stage of low-grade squamous intraepithelial lesion (LSIL). Our studies demonstrate that inactivation of PCDH10 may be a critical event in CC progression and form a potentially useful therapeutic target for CC.
doi:10.1002/gcc.20703
PMCID: PMC3430375  PMID: 19681120
2.  Genetics of follicular lymphoma transformation 
Cell reports  2014;6(1):130-140.
Summary
Follicular lymphoma (FL) is an indolent disease, but 30-40% of cases undergo histologic transformation to an aggressive malignancy, typically represented by diffuse large B cell lymphoma (DLBCL). The pathogenesis of this process remains largely unknown. Using whole-exome sequencing and copy-number analysis, here we show that the dominant clone of FL and transformed FL (tFL) arise by divergent evolution from a common mutated precursor through the acquisition of distinct genetic events. Mutations in epigenetic modifiers and anti-apoptotic genes are introduced early in the common precursor, while tFL is specifically associated with alterations deregulating cell-cycle progression and DNA-damage responses (CDKN2A/B, MYC, TP53), as well as with aberrant somatic hypermutation. The genomic profile of tFL shares similarities with that of germinal center B-cell-type de novo DLBCL, but also displays unique combinations of altered genes, with diagnostic and therapeutic implications.
doi:10.1016/j.celrep.2013.12.027
PMCID: PMC4100800  PMID: 24388756
3.  MYC Protein Expression in Primary Diffuse Large B-Cell Lymphoma of the Central Nervous System 
PLoS ONE  2014;9(12):e114398.
Primary diffuse large B-cell lymphoma of the central nervous system (CNS DLBCL) is a rare, aggressive subtype of DLBCL, the biology of which is poorly understood. Recent studies have suggested a prognostic role of MYC protein expression in systemic DLBCL, but little is known about the frequency and significance of MYC protein expression in CNS DLBCL. Hence, we investigated MYC protein expression profiles of CNS DLBCL and assessed the relationship between MYC expression and a variety of histopathologic, immunophenotypic, genetic, and clinical features. Fifty-nine CNS DLBCL diagnosed at our institution over the past 13 years were evaluated. The majority of cases (80%) showed centroblastic morphology, and 12 (20%) displayed a perivascular pattern of infiltration. According to the Hans criteria, 41 (69%) cases had a non-germinal center B-cell and 18 (31%) had a germinal center B-cell cell-of-origin (COO) phenotype. Mean MYC protein expression was 50% (median: 50%, range: 10-80%). Forty-three cases (73%) showed MYC overexpression (≥40%), and 35 (60%) showed MYC/BCL2 coexpression. MYC overexpression was seen in the single case harboring MYC translocation and in the cases showing increased copies of MYC (27%); however, no significant difference in mean MYC expression was seen between groups harboring or lacking MYC aberrations. In our series, age was associated with a significantly increased risk of death, and the perivascular pattern of infiltration was associated with a significantly increased risk of disease progression. Neither MYC expression (with or without BCL2 coexpression) nor other variables, including COO subtype were predictive of clinical outcome. Our findings indicate that the proportion of CNS DLBCL overexpressing MYC is higher compared to systemic DLBCL, and MYC overexpression appears to be independent of genetic MYC abnormalities. Thus, MYC expression and other immunophenotypic markers used for prognostication of systemic DLBCL might not apply to CNS DLBCL due to differences in disease biology.
doi:10.1371/journal.pone.0114398
PMCID: PMC4257680  PMID: 25479599
4.  Identification of a recurrent germline PAX5 mutation and susceptibility to pre-B cell acute lymphoblastic leukemia 
Nature genetics  2013;45(10):1226-1231.
doi:10.1038/ng.2754
PMCID: PMC3919799  PMID: 24013638
5.  Creation and characterization of BAC-transgenic mice with physiological over-expression of epitope-tagged RCAN1 (DSCR1) 
The chromosome 21 gene RCAN1, encoding a modulator of the calcineurin (CaN) phosphatase, is a candidate gene for contributing to cognitive disability in people with Down syndrome (DS; trisomy 21). To develop a physiologically relevant model for studying the biochemistry of RCAN1 and its contribution to DS, we generated bacterial artificial chromosome-transgenic (BAC-Tg) mouse lines containing the human RCAN1 gene with a C-terminal HA-FLAG epitope tag incorporated by recombineering. The BAC-Tg was expressed at levels only moderately higher than the native Rcan1 gene; approximately 1.5-fold in RCAN1BAC-Tg1 and 2-fold in RCAN1BAC-Tg2. Affinity purification of the RCAN1 protein complex from brains of these mice revealed a core complex of RCAN1 with calcineurin (CaN), glycogen synthase kinase 3-beta (Gsk3b), and calmodulin, with sub-stoichiometric components including LOC73419. The BAC-Tg mice are fully viable, but long-term synaptic potentiation (LTP) is impaired in proportion to BAC-Tg dosage in hippocampal brain slices from these mice. RCAN1 can act as a tumor suppressor in some systems, but we found that the RCAN1 BAC-Tg did not reduce mammary cancer growth when present at a low copy number in Tp53;WAP-Cre mice. This work establishes a useful mouse model for investigating the biochemistry and dose-dependent functions of the RCAN1 protein in vivo.
doi:10.1007/s00335-012-9436-9
PMCID: PMC3562396  PMID: 23096997
6.  Combined Genetic Inactivation of Beta2-Microglobulin and CD58 Reveals Frequent Escape from Immune Recognition in Diffuse Large B-cell Lymphoma 
Cancer cell  2011;20(6):728-740.
SUMMARY
We report that diffuse large B-cell lymphoma (DLBCL) commonly fails to express cell-surface molecules necessary for the recognition of tumor cells by immune-effector cells. In 29% of cases, mutations and deletions inactivate the β2-microglobulin gene, thus preventing the cell-surface expression of the HLA class-I (HLA-I) complex that is necessary for recognition by CD8+ cytotoxic T-cells. In 21% of cases, analogous lesions involve the CD58 gene, which encodes a molecule involved in T and natural killer cell-mediated responses. In addition to gene inactivation, alternative mechanisms lead to aberrant expression of HLA-I and CD58 in >60% of DLBCL. These two events are significantly associated in this disease, suggesting that they are co-selected during lymphomagenesis for their combined role in escape from immune-surveillance.
doi:10.1016/j.ccr.2011.11.006
PMCID: PMC3660995  PMID: 22137796
7.  Inactivating mutations of acetyltransferase genes in B-cell lymphoma 
Nature  2011;471(7337):189-195.
B-cell non-Hodgkin lymphoma (B-NHL) comprises biologically and clinically distinct diseases whose pathogenesis is associated with genetic lesions affecting oncogenes and tumor-suppressor genes. We report here that the two most common types, follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL), harbor frequent structural alterations inactivating CREBBP and, more rarely, EP300, two highly related histone and non-histone acetyltransferases (HATs) that act as transcriptional co-activators in multiple signaling pathways. Overall, ~39% of DLBCL and 41% of FL cases display genomic deletions and/or somatic mutations that remove or inactivate the HAT coding domain of these two genes. These lesions commonly affect one allele, suggesting that reduction in HAT dosage is important for lymphomagenesis. We demonstrate specific defects in acetylation-mediated inactivation of the BCL6 onco-protein and activation of the p53 tumor-suppressor. These results identify CREBBP/EP300 mutations as a major pathogenetic mechanism shared by common forms of B-NHL, and have direct implications for the use of drugs targeting acetylation/deacetylation mechanisms.
doi:10.1038/nature09730
PMCID: PMC3271441  PMID: 21390126
8.  Integrative genomic approaches in cervical cancer: implications for molecular pathogenesis 
Future oncology (London, England)  2010;6(10):1643-1652.
Cervical cancer (CC) as a single diagnostic entity exhibits differences in clinical behavior and poor outcomes in response to therapy in advanced tumors. Although infection of high-risk human papillomavirus is recognized as an important initiating event in cervical tumorigenesis, stratification of CC into subclasses for progression and response to treatment remains elusive. Existing knowledge of genetic, epigenetic and transcriptional alterations is inadequate in addressing the issues of diagnosis, progression and response to treatment. Recent technological advances in high-throughput genomics and the application of integrative approaches have greatly accelerated gene discovery, facilitating the identification of molecular targets. In this article, we discuss the results obtained by preliminary integrative analysis of DNA copy number increases and gene expression, utilizing the two most common copy number-gained regions of 5p and 20q in identifying gene targets in CC. These analyses provide insights into the roles of genes such as RNASEN, POLS and SKP2 on 5p, KIF3B, RALY and E2F1 at 20q11.2 and CSE1L, ZNF313 and B4GALT5 at 20q13.13. Future integrative applications using additional datasets, such as mutations, DNA methylation and clinical outcomes, will raise the promise of accomplishing the identification of biological pathways and molecular targets for therapies for patients with CC.
doi:10.2217/fon.10.114
PMCID: PMC3037979  PMID: 21062161
amplification; cervical carcinoma; chromosome 5p; chromosome 20q; chromosome alteration; gene expression; integrative genomics; precancerous lesion; single nucleotide polymorphism array
9.  PDK1 potentiates upstream lesions on the PI3K pathway in breast carcinoma 
Cancer research  2009;69(15):6299-6306.
Lesions of ERBB2, PTEN, and PIK3CA activate the PI3K pathway during cancer development by increasing levels of phosphatidylinositol-3,4,5-triphosphate (PIP3). 3-phosphoinositide-dependent kinase 1 (PDK1) is the first node of the PI3K signal output and is required for activation of AKT. PIP3 recruits PDK1 and AKT to the cell membrane through interactions with their PH domains, allowing PDK1 to activate AKT by phosphorylating it at residue threonine 308. We show that total PDK1 protein and mRNA was over-expressed in a majority of human breast cancers and that 21% of tumors had five or more copies of the gene encoding PDK1, PDPK1. We found that increased PDPK1 copy number was associated with upstream pathway lesions (ERBB2 amplification, PTEN loss, or PIK3CA mutation), as well as patient survival. Examination of an independent set of breast cancers and tumor cell lines derived from multiple forms of human cancers also found increased PDK1 protein levels associated with such upstream pathway lesions. In human mammary cells, PDK1 enhanced the ability of upstream lesions to signal to AKT, stimulate cell growth and migration, and rendered cells more resistant to PDK1 and PI3K inhibition. After orthotopic transplantation, PDK1 overexpression was not oncogenic but dramatically enhanced the ability of ERBB2 to form tumors. Our studies argue that PDK1 overexpression and increased PDPK1 copy number are common occurrences in cancer that potentiate the oncogenic effect of upstream lesions on the PI3K pathway. Therefore, we conclude that alteration of PDK1 is a critical component of oncogenic PI3K signaling in breast cancer.
doi:10.1158/0008-5472.CAN-09-0820
PMCID: PMC2727605  PMID: 19602588
PDK1; PI3K; ERBB2; PTEN; breast
10.  Integrative genomics analysis of chromosome 5p gain in cervical cancer reveals target over-expressed genes, including Drosha 
Molecular Cancer  2008;7:58.
Background
Copy number gains and amplifications are characteristic feature of cervical cancer (CC) genomes for which the underlying mechanisms are unclear. These changes may possess oncogenic properties by deregulating tumor-related genes. Gain of short arm of chromosome 5 (5p) is the most frequent karyotypic change in CC.
Methods
To examine the role of 5p gain, we performed a combination of single nucleotide polymorphism (SNP) array, fluorescence in situ hybridization (FISH), and gene expression analyses on invasive cancer and in various stages of CC progression.
Results
The SNP and FISH analyses revealed copy number increase (CNI) of 5p in 63% of invasive CC, which arises at later stages of precancerous lesions in CC development. We integrated chromosome 5 genomic copy number and gene expression data to identify key target over expressed genes as a consequence of 5p gain. One of the candidates identified was Drosha (RNASEN), a gene that is required in the first step of microRNA (miRNA) processing in the nucleus. Other 5p genes identified as targets of CNI play a role in DNA repair and cell cycle regulation (BASP1, TARS, PAIP1, BRD9, RAD1, SKP2, and POLS), signal transduction (OSMR), and mitochondrial oxidative phosphorylation (NNT, SDHA, and NDUFS6), suggesting that disruption of pathways involving these genes may contribute to CC progression.
Conclusion
Taken together, we demonstrate the power of integrating genomics data with expression data in deciphering tumor-related targets of CNI. Identification of 5p gene targets in CC denotes an important step towards biomarker development and forms a framework for testing as molecular therapeutic targets.
doi:10.1186/1476-4598-7-58
PMCID: PMC2440550  PMID: 18559093
11.  Promoter hypermethylation-mediated inactivation of multiple Slit-Robo pathway genes in cervical cancer progression 
Molecular Cancer  2006;5:16.
Background
Cervical Cancer (CC) exhibits highly complex genomic alterations. These include hemizygous deletions at 4p15.3, 10q24, 5q35, 3p12.3, and 11q24, the chromosomal sites of Slit-Robo pathway genes. However, no candidate tumor suppressor genes at these regions have been identified so far. Slit family of secreted proteins modulates chemokine-induced cell migration of distinct somatic cell types. Slit genes mediate their effect by binding to its receptor Roundabout (Robo). These genes have shown to be inactivated by promoter hypermethylation in a number of human cancers.
Results
To test whether Slit-Robo pathway genes are targets of inactivation at these sites of deletion, we examined promoter hypermethylation of SLIT1, SLIT2, SLIT3, ROBO1, and ROBO3 genes in invasive CC and its precursor lesions. We identified a high frequency of promoter hypermethylation in all the Slit-Robo genes resulting in down regulated gene expression in invasive CC, but the inhibitors of DNA methylation and histone deacetylases (HDACs) in CC cell lines failed to effectively reactivate the down-regulated expression. These results suggest a complex mechanism of inactivation in the Slit-Robo pathway in CC. By analysis of cervical precancerous lesions, we further show that promoter hypermethylation of Slit-Robo pathway occurs early in tumor progression.
Conclusion
Taken together, these findings suggest that epigenetic alterations of Slit-Robo pathway genes (i) play a role in CC development, (ii) further delineation of molecular basis of promoter methylation-mediated gene regulation provides a potential basis for epigenetic-based therapy in advanced stage CC, and (iii) form epigenetic signatures to identify precancerous lesions at risk to progression.
doi:10.1186/1476-4598-5-16
PMCID: PMC1482714  PMID: 16700909
12.  Frequent Promoter Methylation of CDH1, DAPK, RARB, and HIC1 Genes in Carcinoma of Cervix Uteri: Its Relationship to Clinical Outcome 
Molecular Cancer  2003;2:24.
Background
Cervical cancer (CC), a leading cause of cancer-related deaths in women worldwide, has been causally linked to genital human papillomavirus (HPV) infection. Although a host of genetic alterations have been identified, molecular basis of CC development is still poorly understood.
Results
We examined the role of promoter hypermethylation, an epigenetic alteration that is associated with the silencing tumor suppressor genes in human cancer, by studying 16 gene promoters in 90 CC cases. We found a high frequency of promoter methylation in CDH1, DAPK, RARB, and HIC1 genes. Correlation of promoter methylation with clinical characteristics and other genetic changes revealed the following: a) overall promoter methylation was higher in more advanced stage of the disease, b) promoter methylation of RARB and BRCA1 predicted worse prognosis, and c) the HIC1 promoter methylation was frequently seen in association with microsatellite instability. Promoter methylation was associated with gene silencing in CC cell lines. Treatment with methylation or histone deacetylation-inhibiting agents resulted in profound reactivation of gene expression.
Conclusions
These results may have implications in understanding the underlying epigenetic mechanisms in CC development, provide prognostic indicators, and identify important gene targets for treatment.
doi:10.1186/1476-4598-2-24
PMCID: PMC156646  PMID: 12773202
cervical carcinoma; promoter hypermethylation; CDH1; DAPK; RARB; tumor suppressor gene; gene expression
13.  Characteristic promoter hypermethylation signatures in male germ cell tumors 
Molecular Cancer  2002;1:8.
Background
Human male germ cell tumors (GCTs) arise from undifferentiated primordial germ cells (PGCs), a stage in which extensive methylation reprogramming occurs. GCTs exhibit pluripotentality and are highly sensitive to cisplatin therapy. The molecular basis of germ cell (GC) transformation, differentiation, and exquisite treatment response is poorly understood.
Results
To assess the role and mechanism of promoter hypermethylation, we analyzed CpG islands of 21 gene promoters by methylation-specific PCR in seminomatous (SGCT) and nonseminomatous (NSGCT) GCTs. We found 60% of the NSGCTs demonstrating methylation in one or more gene promoters whereas SGCTs showed a near-absence of methylation, therefore identifying distinct methylation patterns in the two major histologies of GCT. DNA repair genes MGMT, RASSF1A, and BRCA1, and a transcriptional repressor gene HIC1, were frequently methylated in the NSGCTs. The promoter hypermethylation was associated with gene silencing in most methylated genes, and reactivation of gene expression occured upon treatment with 5-Aza-2' deoxycytidine in GCT cell lines.
Conclusions
Our results, therefore, suggest a potential role for epigenetic modification of critical tumor suppressor genes in pathways relevant to GC transformation, differentiation, and treatment response.
doi:10.1186/1476-4598-1-8
PMCID: PMC149411  PMID: 12495446
Germ cell tumor; promoter hypermethylation; MGMT; RASSF1A; BRCA1; gene expression
14.  Subtyping of renal cortical neoplasms in fine needle aspiration biopsies using a decision tree based on genomic alterations detected by fluorescence in situ hybridization 
Bju International  2014;114(6):881-890.
Objectives
To improve the overall accuracy of diagnosis in needle biopsies of renal masses, especially small renal masses (SRMs), using fluorescence in situ hybridization (FISH), and to develop a renal cortical neoplasm classification decision tree based on genomic alterations detected by FISH.
Patients and Methods
Ex vivo fine needle aspiration biopsies of 122 resected renal cortical neoplasms were subjected to FISH using a series of seven-probe sets to assess gain or loss of 10 chromosomes and rearrangement of the 11q13 locus. Using specimen (nephrectomy)-histology as the ‘gold standard’, a genomic aberration-based decision tree was generated to classify specimens. The diagnostic potential of the decision tree was assessed by comparing the FISH-based classification and biopsy histology with specimen histology.
Results
Of the 114 biopsies diagnostic by either method, a higher diagnostic yield was achieved by FISH (92 and 96%) than histology alone (82 and 84%) in the 65 biopsies from SRMs (<4 cm) and 49 from larger masses, respectively. An optimized decision tree was constructed based on aberrations detected in eight chromosomes, by which the maximum concordance of classification achieved by FISH was 79%, irrespective of mass size. In SRMs, the overall sensitivity of diagnosis by FISH compared with histopathology was higher for benign oncocytoma, was similar for the chromophobe renal cell carcinoma subtype, and was lower for clear-cell and papillary subtypes. The diagnostic accuracy of classification of needle biopsy specimens (from SRMs) increased from 80% obtained by histology alone to 94% when combining histology and FISH.
Conclusion
The present study suggests that a novel FISH assay developed by us has a role to play in assisting in the yield and accuracy of diagnosis of renal cortical neoplasms in needle biopsies in particular, and can help guide the clinical management of patients with SRMs that were non-diagnostic by histology.
doi:10.1111/bju.12643
PMCID: PMC4257075  PMID: 24467611
renal cell carcinoma; fine needle aspiration biopsies; fluorescence in situ hybridization; classification; algorithm; oncocytoma

Results 1-14 (14)