PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-23 (23)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Altered Resting-State Functional Connectivity of Basolateral and Centromedial Amygdala Complexes in Posttraumatic Stress Disorder 
Neuropsychopharmacology  2013;39(2):361-369.
The amygdala is a major structure that orchestrates defensive reactions to environmental threats and is implicated in hypervigilance and symptoms of heightened arousal in posttraumatic stress disorder (PTSD). The basolateral and centromedial amygdala (CMA) complexes are functionally heterogeneous, with distinct roles in learning and expressing fear behaviors. PTSD differences in amygdala-complex function and functional connectivity with cortical and subcortical structures remain unclear. Recent military veterans with PTSD (n=20) and matched trauma-exposed controls (n=22) underwent a resting-state fMRI scan to measure task-free synchronous blood-oxygen level dependent activity. Whole-brain voxel-wise functional connectivity of basolateral and CMA seeds was compared between groups. The PTSD group had stronger functional connectivity of the basolateral amygdala (BLA) complex with the pregenual anterior cingulate cortex (ACC), dorsomedial prefrontal cortex, and dorsal ACC than the trauma-exposed control group (p<0.05; corrected). The trauma-exposed control group had stronger functional connectivity of the BLA complex with the left inferior frontal gyrus than the PTSD group (p<0.05; corrected). The CMA complex lacked connectivity differences between groups. We found PTSD modulates BLA complex connectivity with prefrontal cortical targets implicated in cognitive control of emotional information, which are central to explanations of core PTSD symptoms. PTSD differences in resting-state connectivity of BLA complex could be biasing processes in target regions that support behaviors central to prevailing laboratory models of PTSD such as associative fear learning. Further research is needed to investigate how differences in functional connectivity of amygdala complexes affect target regions that govern behavior, cognition, and affect in PTSD.
doi:10.1038/npp.2013.197
PMCID: PMC3870774  PMID: 23929546
basolateral amygdala; biological psychiatry; centromedial amygdala; fMRI; imaging; clinical or preclinical; mood/anxiety/stress disorders; neuroanatomy; PTSD; resting state; PTSD; resting state; amygdala; basolateral amygdala; centromedial amygdala; functional connectivity
2.  Acute effects of trauma-focused research procedures on participant safety and distress 
Psychiatry research  2013;215(1):154-158.
The ethical conduct of research on posttraumatic stress disorder (PTSD) requires assessing the risks to study participants. Some previous findings suggest that patients with PTSD report higher distress compared to non-PTSD participants after trauma-focused research. However, the impact of study participation on participant risk, such as suicidal/homicidal ideation and increased desire to use drugs or alcohol, has not been adequately investigated. Furthermore, systematic evaluation of distress using pre- and post-study assessments, and the effects of study procedures involving exposure to aversive stimuli, are lacking. Individuals with a history of PTSD (n=68) and trauma-exposed non-PTSD controls (n=68) responded to five participant risk and distress questions before and after participating in research procedures including a PTSD diagnostic interview and a behavioral task with aversive stimuli consisting of mild electrical shock. The desire to use alcohol or drugs increased modestly with study participation among the subgroup (n=48) of participants with current PTSD. Participation in these research procedures was not associated with increased distress or participant risk, nor did study participation interact with lifetime PTSD diagnosis. These results suggest some increase in distress with active PTSD but a participant risk profile that supports a favorable risk-benefit ratio for conducting research in individuals with PTSD.
doi:10.1016/j.psychres.2013.10.038
PMCID: PMC4276126  PMID: 24262664
PTSD; trauma; research risks; risk assessment; suicidal ideation; homicidal ideation; distress
3.  Differential Developmental Trajectories of Magnetic Susceptibility in Human Brain Gray and White Matter Over the Lifespan 
Human brain mapping  2013;35(6):2698-2713.
As indicated by several recent studies, magnetic susceptibility of the brain is influenced mainly by myelin in the white matter and by iron deposits in the deep nuclei. Myelination and iron deposition in the brain evolve both spatially and temporally. This evolution reflects an important characteristic of normal brain development and ageing. In this study, we assessed the changes of regional susceptibility in the human brain in vivo by examining the developmental and ageing process from 1 to 83 years of age. The evolution of magnetic susceptibility over this lifespan was found to display differential trajectories between the gray and the white matter. In both cortical and subcortical white matter, an initial decrease followed by a subsequent increase in magnetic susceptibility was observed, which could be fitted by a Poisson curve. In the gray matter, including the cortical gray matter and the iron-rich deep nuclei, magnetic susceptibility displayed a monotonic increase that can be described by an exponential growth. The rate of change varied according to functional and anatomical regions of the brain. For the brain nuclei, the age-related changes of susceptibility were in good agreement with the findings from R2* measurement. Our results suggest that magnetic susceptibility may provide valuable information regarding the spatial and temporal patterns of brain myelination and iron deposition during brain maturation and ageing.
doi:10.1002/hbm.22360
PMCID: PMC3954958  PMID: 24038837
quantitative susceptibility mapping; brain development and aging; myelination; brain iron
4.  Effects of chronic mild traumatic brain injury on white matter integrity in Iraq and Afghanistan war veterans 
Human brain mapping  2012;34(11):10.1002/hbm.22117.
Mild traumatic brain injury (TBI) is a common source of morbidity from the wars in Iraq and Afghanistan. With no overt lesions on structural MRI, diagnosis of chronic mild TBI in military veterans relies on obtaining an accurate history and assessment of behavioral symptoms that are also associated with frequent comorbid disorders, particularly posttraumatic stress disorder (PTSD) and depression. Military veterans from Iraq and Afghanistan with mild TBI (n=30) with comorbid PTSD and depression and non-TBI participants from primary (n=42) and confirmatory (n=28) control groups were assessed with high angular resolution diffusion imaging (HARDI). White matter-specific registration followed by whole-brain voxelwise analysis of crossing fibers provided separate partial volume fractions reflecting the integrity of primary fibers and secondary (crossing) fibers. Loss of white matter integrity in primary fibers (p < .05; corrected) was associated with chronic mild TBI in a widely distributed pattern of major fiber bundles and smaller peripheral tracts including the corpus callosum (genu, body, splenium), forceps minor, forceps major, superior and posterior corona radiata, internal capsule, superior longitudinal fasciculus, and others. Distributed loss of white matter integrity correlated with duration of loss of consciousness and most notably with “feeling dazed or confused,” but not diagnosis of PTSD or depressive symptoms. This widespread spatial extent of white matter damage has typically been reported in moderate to severe TBI. The diffuse loss of white matter integrity appears consistent with systemic mechanisms of damage shared by blast- and impact-related mild TBI that involves a cascade of inflammatory and neurochemical events.
doi:10.1002/hbm.22117
PMCID: PMC3740035  PMID: 22706988
mild traumatic brain injury; high angular resolution diffusion imaging; white matter; crossing fibers; posttraumatic stress disorder
5.  Scan–Rescan Reliability of Subcortical Brain Volumes Derived From Automated Segmentation 
Human brain mapping  2010;31(11):1751-1762.
Large-scale longitudinal studies of regional brain volume require reliable quantification using automated segmentation and labeling. However, repeated MR scanning of the same subject, even if using the same scanner and acquisition parameters, does not result in identical images due to small changes in image orientation, changes in prescan parameters, and magnetic field instability. These differences may lead to appreciable changes in estimates of volume for different structures. This study examined scan–rescan reliability of automated segmentation algorithms for measuring several subcortical regions, using both within-day and across-day comparison sessions in a group of 23 normal participants. We found that the reliability of volume measures including percent volume difference, percent volume overlap (Dice’s coefficient), and intraclass correlation coefficient (ICC), varied substantially across brain regions. Low reliability was observed in some structures such as the amygdala (ICC = 0.6), with higher reliability (ICC = 0.9) for other structures such as the thalamus and caudate. Patterns of reliability across regions were similar for automated segmentation with FSL/FIRST and FreeSurfer (longitudinal stream). Reliability was associated with the volume of the structure, the ratio of volume to surface area for the structure, the magnitude of the interscan interval, and the method of segmentation. Sample size estimates for detecting changes in brain volume for a range of likely effect sizes also differed by region. Thus, longitudinal research requires a careful analysis of sample size and choice of segmentation method combined with a consideration of the brain structure(s) of interest and the magnitude of the anticipated effects.
doi:10.1002/hbm.20973
PMCID: PMC3782252  PMID: 20162602
structural MRI; FreeSurfer; FSL/FIRST; reliability; scan–rescan; automated segmentation
6.  A case of frontal neuropsychological and neuroimaging signs following multiple primary-blast exposure 
Neurocase  2011;18(3):258-269.
Blast-related traumatic brain injury (TBI) from the Afghanistan and Iraq wars represents a significant medical concern for troops and veterans. To better understand the consequences of primary-blast injury in humans, we present a case of a Marine exposed to multiple primary blasts during his 14-year military career. The neuropsychological profile of this formerly high-functioning veteran suggested primarily executive dysfunction. Diffusion-tensor imaging revealed white-matter pathology in long fiber tracks compared with a composite fractional-anisotropy template derived from a veteran reference control group without TBI. This study supports the existence of primary blast-induced neurotrauma in humans and introduces a neuroimaging technique with potential to discriminate multiple-blast TBI.
doi:10.1080/13554794.2011.588181
PMCID: PMC3718065  PMID: 21879996
Blast-induced neurotrauma; Closed-head injury; Diffusion-tensor imaging; Executive control; Explosive Ordnance Disposal Service; Fractional anisotropy; Primary blast; Traumatic brain injury; White matter
7.  Neural systems for guilt from actions affecting self versus others 
Neuroimage  2012;60(1):683-692.
Guilt is a core emotion governing social behavior by promoting compliance with social norms or self-imposed standards. The goal of this study was to contrast guilty responses to actions that affect self versus others, since actions with social consequences are hypothesized to yield greater guilty feelings due to adopting the perspective and subjective emotional experience of others. Sixteen participants were presented with brief hypothetical scenarios in which the participant’s actions resulted in harmful consequences to self (guilt-self) or to others (guilt-other) during functional MRI. Participants felt more intense guilt for guilt-other than guilt-self and guilt-neutral scenarios. Guilt scenarios revealed distinct regions of activity correlated with intensity of guilt, social consequences of actions, and the interaction of guilt by social consequence. Guilt intensity was associated with activation of the dorsomedial PFC, superior frontal gyrus, supramarginal gyrus, and anterior inferior frontal gyrus. Guilt accompanied by social consequences was associated with greater activation than without social consequences in the ventromedial and dorsomedial PFC, precuneus, posterior cingulate, and posterior superior temporal sulcus. Finally, the interaction analysis highlighted select regions that were more strongly correlated with guilt intensity as a function of social consequence, including the left anterior inferior frontal gyrus, left ventromedial PFC, and left anterior inferior parietal cortex. Our results suggest these regions intensify guilt where harm to others may incur a greater social cost.
doi:10.1016/j.neuroimage.2011.12.069
PMCID: PMC3288150  PMID: 22230947
guilt; empathy; perspective taking; social emotions; functional magnetic resonance imaging
8.  Neural Systems for Cognitive and Emotional Processing in Posttraumatic Stress Disorder 
Individuals with posttraumatic stress disorder (PTSD) show altered cognition when trauma-related material is present. PTSD may lead to enhanced processing of trauma-related material, or it may cause impaired processing of trauma-unrelated information. However, other forms of emotional information may also alter cognition in PTSD. In this review, we discuss the behavioral and neural effects of emotion processing on cognition in PTSD, with a focus on neuroimaging results. We propose a model of emotion-cognition interaction based on evidence of two network models of altered brain activation in PTSD. The first is a trauma-disrupted network made up of ventrolateral PFC, dorsal anterior cingulate cortex (ACC), hippocampus, insula, and dorsomedial PFC that are differentially modulated by trauma content relative to emotional trauma-unrelated information. The trauma-disrupted network forms a subnetwork of regions within a larger, widely recognized network organized into ventral and dorsal streams for processing emotional and cognitive information that converge in the medial PFC and cingulate cortex. Models of fear learning, while not a cognitive process in the conventional sense, provide important insights into the maintenance of the core symptom clusters of PTSD such as re-experiencing and hypervigilance. Fear processing takes place within the limbic corticostriatal loop composed of threat-alerting and threat-assessing components. Understanding the disruptions in these two networks, and their effect on individuals with PTSD, will lead to an improved knowledge of the etiopathogenesis of PTSD and potential targets for both psychotherapeutic and pharmacotherapeutic interventions.
doi:10.3389/fpsyg.2012.00449
PMCID: PMC3498869  PMID: 23162499
PTSD; emotion processing; cognitive control; neuroimaging; emotion-cognition interactions
9.  Reduced hippocampal and amygdala activity predicts memory distortions for trauma reminders in combat-related PTSD 
Journal of psychiatric research  2010;45(5):660-669.
Neurobiological models of posttraumatic stress disorder (PTSD) suggest that altered activity in the medial temporal lobes (MTL) during encoding of traumatic memories contribute to the development and maintenance of the disorder. However, there is little direct evidence in the PTSD literature to support these models. The goal of the present study was to examine MTL activity during trauma encoding in combat veterans using the subsequent memory paradigm. Fifteen combat veterans diagnosed with PTSD and 14 trauma-exposed control participants viewed trauma-related and neutral pictures while undergoing event-related fMRI. Participants returned one week after scanning for a recognition memory test. Region-of-interest (ROI) and voxel-wise whole brain analyses were conducted to examine the neural correlates of successful memory encoding. Patients with PTSD showed greater false alarm rates for novel lures than the trauma-exposed control group, suggesting reliance on gist-based representations in lieu of encoding contextual details. Imaging analyses revealed reduced activity in the amygdala and hippocampus in PTSD patients during successful encoding of trauma-related stimuli. Reduction in left hippocampal activity was associated with high arousal symptoms on the Clinician-Administered PTSD Scale (CAPS). The behavioral false alarm rate for traumatic stimuli co-varied with activity in the bilateral precuneus. These results support neurobiological theories positing reduced hippocampal activity under conditions of high stress and arousal. Reduction in MTL activity for successfully encoded stimuli and increased precuneus activity may underlie reduced stimulus specific encoding and greater gist memory in patients with PTSD, leading to maintenance of the disorder.
doi:10.1016/j.jpsychires.2010.10.007
PMCID: PMC3081889  PMID: 21047644
fMRI; gist; contextual memory; military; subsequent memory paradigm; precuneus
10.  Neurosteroids and Self-Reported Pain in Veterans Who Served in the U.S. Military After September 11, 2001 
Pain medicine (Malden, Mass.)  2010;11(10):1469-1476.
Objective
Nearly half of Operation Enduring Freedom / Operation Iraqi Freedom (OEF/OIF) veterans experience continued pain post-deployment. Several investigations report analgesic effects of allopregnanolone and other neurosteroids in animal models, but few data are currently available focusing on neurosteroids in clinical populations. Allopregnanolone positively modulates GABAA receptors and demonstrates pronounced analgesic and anxiolytic effects in rodents, yet studies examining the relationship between pain and allopregnanolone in humans are limited. We thus hypothesized that endogenous allopregnanolone and other neurosteroid levels may be negatively correlated with self-reported pain symptoms in humans.
Design
We determined serum neurosteroid levels by gas chromatography / mass spectrometry (allopregnanolone, pregnenolone) or radioimmunoassay (dehydroepiandrosterone [DHEA], progesterone, DHEA sulfate [DHEAS]) in 90 male veterans who served in the U.S. military after September 11, 2001. Self-reported pain symptoms were assessed in four areas (low back pain, chest pain, muscle soreness, headache). Stepwise linear regression analyses were conducted to investigate the relationship between pain assessments and neurosteroids, with the inclusion of smoking, alcohol use, age, and history of traumatic brain injury as covariates.
Setting
Durham VA Medical Center.
Results
Allopregnanolone levels were inversely associated with low back pain (p=0.044) and chest pain (p=0.013), and DHEA levels were inversely associated with muscle soreness (p=0.024). DHEAS levels were positively associated with chest pain (p=0.001). Additionally, there was a positive association between traumatic brain injury and muscle soreness (p=0.002).
Conclusions
Neurosteroids may be relevant to the pathophysiology of self-reported pain symptoms in this veteran cohort, and could represent future pharmacological targets for pain disorders.
doi:10.1111/j.1526-4637.2010.00927.x
PMCID: PMC2994993  PMID: 20735755
neuroactive steroid; allopregnanolone; pregnenolone; DHEA; nociception; pain; neurosteroid
11.  Serotonin transporter gene polymorphisms and brain function during emotional distraction from cognitive processing in posttraumatic stress disorder 
BMC Psychiatry  2011;11:76.
Background
Serotonergic system dysfunction has been implicated in posttraumatic stress disorder (PTSD). Genetic polymorphisms associated with serotonin signaling may predict differences in brain circuitry involved in emotion processing and deficits associated with PTSD. In healthy individuals, common functional polymorphisms in the serotonin transporter gene (SLC6A4) have been shown to modulate amygdala and prefrontal cortex (PFC) activity in response to salient emotional stimuli. Similar patterns of differential neural responses to emotional stimuli have been demonstrated in PTSD but genetic factors influencing these activations have yet to be examined.
Methods
We investigated whether SLC6A4 promoter polymorphisms (5-HTTLPR, rs25531) and several downstream single nucleotide polymorphisms (SNPs) modulated activity of brain regions involved in the cognitive control of emotion in post-9/11 veterans with PTSD. We used functional MRI to examine neural activity in a PTSD group (n = 22) and a trauma-exposed control group (n = 20) in response to trauma-related images presented as task-irrelevant distractors during the active maintenance period of a delayed-response working memory task. Regions of interest were derived by contrasting activation for the most distracting and least distracting conditions across participants.
Results
In patients with PTSD, when compared to trauma-exposed controls, rs16965628 (associated with serotonin transporter gene expression) modulated task-related ventrolateral PFC activation and 5-HTTLPR tended to modulate left amygdala activation. Subsequent to combat-related trauma, these SLC6A4 polymorphisms may bias serotonin signaling and the neural circuitry mediating cognitive control of emotion in patients with PTSD.
Conclusions
The SLC6A4 SNP rs16965628 and 5-HTTLPR are associated with a bias in neural responses to traumatic reminders and cognitive control of emotions in patients with PTSD. Functional MRI may help identify intermediate phenotypes and dimensions of PTSD that clarify the functional link between genes and disease phenotype, and also highlight features of PTSD that show more proximal influence of susceptibility genes compared to current clinical categorizations.
doi:10.1186/1471-244X-11-76
PMCID: PMC3112079  PMID: 21545724
PTSD; imaging genetics; ventrolateral PFC; amygdala; SLC6A4; rs16965628; working memory; emotion processing; cognitive control
12.  Rebuttal to Hasan and Pedraza in Comments and Controversies: “Improving the Reliability of Manual and Automated Methods for Hippocampal and Amygdala Volume Measurements” 
NeuroImage  2009;48(3):499-500.
Here we address the critiques offered by Hasan and Pedraza to our recently published manuscript comparing the performance of two automated segmentation programs, FSL/FIRST and FreeSurfer (Morey, et al. 2009). We provide an assessment and discussion of their specific critiques. Hasan and Pedraza bring up some important points concerning our omission of sample demographic features and inclusion of left and right hemisphere volumes as independent measures in correlational analyses. We present additional data on demographic attributes of our sample and and correlations analyzed separately on left and right hemispheres of the amygdala and hippocampus. While their commentary aids the reader to more critically asses our study, it falls short of substantiating that our omissions ought to lead readers to significantly revise their interpretations. Further research will help to disentangle the advantages and limitations of the various freely-available automated segmentation software packages.
doi:10.1016/j.neuroimage.2009.07.013
PMCID: PMC2754839  PMID: 19616634
13.  Alterations in the neural circuitry for emotion and attention associated with posttraumatic stress symptomatology 
Psychiatry research  2009;172(1):7-15.
Information processing models of posttraumatic stress disorder (PTSD) suggest that PTSD is characterized by preferential allocation of attentional resources to potentially threatening stimuli. However, few studies have examined the neural pattern underlying attention and emotion in association with PTSD symptomatology. In the present study, combat veterans with PTSD symptomatology engaged in an emotional oddball task while undergoing functional magnetic resonance imaging (fMRI). Veterans were classified into a high or low symptomatology group based on their scores on the Davidson Trauma Scale (DTS). Participants discriminated infrequent target stimuli (circles) from frequent standards (squares) while emotional and neutral distractors were presented infrequently and irregularly. Results revealed that participants with greater PTSD symptomatology showed enhanced neural activity in ventral-limbic and dorsal regions for emotional stimuli and attenuated activity in dorsolateral prefrontal and parietal regions for attention targets. In the anterior cingulate gyrus, participants with fewer PTSD symptoms showed equivalent responses to attentional and emotional stimuli while the high symptom group showed greater activation for negative emotional stimuli. Taken together, the results suggest that hyperresponsive ventral-limbic activity coupled with altered dorsal-attention and anterior cingulate function may be a neural marker of attention bias in PTSD.
doi:10.1016/j.pscychresns.2008.05.005
PMCID: PMC2692949  PMID: 19237269
PTSD; fMRI; information processing; attentional bias; trauma; oddball task
14.  Staying Cool when Things Get Hot: Emotion Regulation Modulates Neural Mechanisms of Memory Encoding 
During times of emotional stress, individuals often engage in emotion regulation to reduce the experiential and physiological impact of negative emotions. Interestingly, emotion regulation strategies also influence memory encoding of the event. Cognitive reappraisal is associated with enhanced memory while expressive suppression is associated with impaired explicit memory of the emotional event. However, the mechanism by which these emotion regulation strategies affect memory is unclear. We used event-related fMRI to investigate the neural mechanisms that give rise to memory formation during emotion regulation. Twenty-five participants viewed negative pictures while alternately engaging in cognitive reappraisal, expressive suppression, or passive viewing. As part of the subsequent memory design, participants returned to the laboratory two weeks later for a surprise memory test. Behavioral results showed a reduction in negative affect and a retention advantage for reappraised stimuli relative to the other conditions. Imaging results showed that successful encoding during reappraisal was uniquely associated with greater co-activation of the left inferior frontal gyrus, amygdala, and hippocampus, suggesting a possible role for elaborative encoding of negative memories. This study provides neurobehavioral evidence that engaging in cognitive reappraisal is advantageous to both affective and mnemonic processes.
doi:10.3389/fnhum.2010.00230
PMCID: PMC3015134  PMID: 21212840
arousal; cognitive reappraisal; declarative memory; expressive suppression; subsequent memory paradigm; hippocampus; amygdala; left inferior frontal gyrus
15.  Association of trauma exposure with psychiatric morbidity in military veterans who have served since September 11, 2001 
Journal of psychiatric research  2009;43(9):830-836.
Objective
This study examined the association of lifetime traumatic stress with psychiatric diagnostic status and symptom severity in veterans serving in the US military after 9/11/01.
Method
Data from 356 US military veterans were analyzed. Measures included a standardized clinical interview measure of psychiatric disorders, and paper-and-pencil assessments of trauma history, demo-graphic variables, intellectual functioning, posttraumatic stress disorder (PTSD) symptoms, depression, alcohol misuse, and global distress.
Results
Ninety-four percent of respondents reported at least one traumatic stressor meeting DSM-IV criterion A for PTSD (i.e., life threatening event to which the person responded with fear, helplessness or horror), with a mean of four criterion A traumas. Seventy-one percent reported serving in a war-zone, with 50% reporting occurrence of an event meeting criterion A. The rate of current psychiatric disorder in this sample was: 30% PTSD, 20% major depressive disorder, 6% substance abuse or dependence and 10% for the presence of other Axis I psychiatric disorders. After accounting for demographic covariates and combat exposure, childhood physical assault and accident/disasters were most consistently associated with increased likelihood of PTSD. However, PTSD with no comorbid major depressive disorder or substance use disorder was predicted only by combat exposure and adult physical assault. Medical/unexpected-death trauma and adult physical assault were most consistently associated with more severe symptomatology.
Conclusions
Particular categories of trauma were differentially associated with the risk of psychiatric diagnosis and current symptom severity. These findings underscore the importance of conducting thorough assessment of multiple trauma exposures when evaluating recently post-deployed veterans.
doi:10.1016/j.jpsychires.2009.01.004
PMCID: PMC2754834  PMID: 19232639
Traumatic stress; Posttraumatic stress disorder; Combat
16.  Factorial Invariance of Posttraumatic Stress Disorder Symptoms Across Three Veteran Samples 
Journal of traumatic stress  2008;21(3):309-317.
Research generally supports a 4-factor structure of posttraumatic stress disorder (PTSD) symptoms. However, few studies have established factor invariance by comparing multiple groups. This study examined PTSD symptom structure using the Davidson Trauma Scale (DTS) across three veteran samples: treatment-seeking Vietnam-era veterans, treatment-seeking post-Vietnam-era veterans, and Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) veteran research participants. Confirmatory factor analyses of DTS items demonstrated that a 4-factor structural model of the DTS (reexperiencing, avoidance, numbing, and hyperarousal) was superior to five alternate models, including the conventional 3-factor model proposed by the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV; American Psychiatric Association, 1994). Results supported factor invariance across the three veteran cohorts, suggesting that cross-group comparisons are interpretable. Implications and applications for DSM-IV nosology and the validity of symptom measures are discussed.
doi:10.1002/jts.20344
PMCID: PMC2745604  PMID: 18553409
17.  Imaging Frontostriatal Function in Ultra-High-Risk, Early, and Chronic Schizophrenia During Executive Processing 
Archives of general psychiatry  2005;62(3):254-262.
Context
Individuals experiencing prodromal symptoms of schizophrenia (ultra-high-risk group) demonstrate impaired performance on tasks of executive function, attention, and working memory. The neurobiological underpinnings of such executive deficits in ultra-high-risk individuals remains unclear.
Objective
We assessed frontal and striatal functions during a visual oddball continuous performance task, in ultra-high-risk, early, and chronic schizophrenic patients with the use of functional magnetic resonance imaging.
Design
Cross-sectional case-control design.
Setting
Community; outpatient clinic.
Patients
Fifty-two individuals (control, n = 16; ultra-high risk, n = 10; early, n = 15; chronic, n = 11) from a referred clinical sample and age- and sex-matched control volunteers underwent scanning.
Main Outcome Measures
Percentage of active voxels and percentage signal change calculated for the anterior cingulate gyrus (ACG), middle frontal gyrus (MFG), inferior frontal gyrus (IFG), basal ganglia, and thalamus. Performance on the visual oddball task was measured with percentage of hits and d′ (a measure based on the hit rate and the false-alarm rate).
Results
The ultra-high-risk group showed significantly smaller differential activation between task-relevant and task-irrelevant stimuli in the frontal regions (ACG, IFG, MFG) than the control group. Frontostriatal activation associated with target stimuli in the early and chronic groups was significantly lower than the control group, while the ultra-high-risk group showed a trend toward the early group.
Conclusions
Our findings suggest that prefrontal function begins to decline before the onset of syndromally defined illness and hence may represent a vulnerability marker in assessing the risk of developing psychotic disorders among ultra-high-risk individuals.
doi:10.1001/archpsyc.62.3.254
PMCID: PMC2732718  PMID: 15753238
18.  A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes☆ 
NeuroImage  2008;45(3):855-866.
Large databases of high-resolution structural MR images are being assembled to quantitatively examine the relationships between brain anatomy, disease progression, treatment regimens, and genetic influences upon brain structure. Quantifying brain structures in such large databases cannot be practically accomplished by expert neuroanatomists using hand-tracing. Rather, this research will depend upon automated methods that reliably and accurately segment and quantify dozens of brain regions. At present, there is little guidance available to help clinical research groups in choosing such tools. Thus, our goal was to compare the performance of two popular and fully automated tools, FSL/FIRST and FreeSurfer, to expert hand tracing in the measurement of the hippocampus and amygdala. Volumes derived from each automated measurement were compared to hand tracing for percent volume overlap, percent volume difference, across-sample correlation, and 3-D group-level shape analysis. In addition, sample size estimates for conducting between-group studies were computed for a range of effect sizes. Compared to hand tracing, hippocampal measurements with FreeSurfer exhibited greater volume overlap, smaller volume difference, and higher correlation than FIRST, and sample size estimates with FreeSurfer were closer to hand tracing. Amygdala measurement with FreeSurfer was also more highly correlated to hand tracing than FIRST, but exhibited a greater volume difference than FIRST. Both techniques had comparable volume overlap and similar sample size estimates. Compared to hand tracing, a 3-D shape analysis of the hippocampus showed FreeSurfer was more accurate than FIRST, particularly in the head and tail. However, FIRST more accurately represented the amygdala shape than FreeSurfer, which inflated its anterior and posterior surfaces.
doi:10.1016/j.neuroimage.2008.12.033
PMCID: PMC2714773  PMID: 19162198
19.  The validity and diagnostic efficiency of the Davidson Trauma Scale in military veterans who have served since September 11th, 2001 
Journal of anxiety disorders  2008;23(2):247-255.
The present study examined the psychometric properties and diagnostic efficiency of the Davidson Trauma Scale (DTS), a self-report measure of posttraumatic stress disorder (PTSD) symptoms. Participants included 158 U.S. military veterans who have served since September 11, 2001 (post-9/11). Results support the DTS as a valid self-report measure of PTSD symptoms. The DTS demonstrated good internal consistency, concurrent validity, and convergent and divergent validity. Diagnostic efficiency was excellent when discriminating between veterans with PTSD and veterans with no Axis I diagnosis. However, although satisfactory by conventional standards, efficiency was substantially attenuated when discriminating between PTSD and other Axis I diagnoses. Thus, results illustrate that potency of the DTS as a diagnostic aid was highly dependent on the comparison group used for analyses. Results are discussed in terms of applications to clinical practice and research.
doi:10.1016/j.janxdis.2008.07.007
PMCID: PMC2709769  PMID: 18783913
Posttraumatic stress disorder; Military veterans; Test validity; Differential diagnosis; Diagnostic efficiency
20.  Neural Correlates of Automatic and Controlled Auditory Processing in Schizophrenia 
Individuals with schizophrenia demonstrate impairments in selective attention and sensory processing. The authors assessed differences in brain function between 26 participants with schizophrenia and 17 comparison subjects engaged in automatic (unattended) and controlled (attended) auditory information processing using event-related functional MRI. Lower regional neural activation during automatic auditory processing in the schizophrenia group was not confined to just the temporal lobe, but also extended to prefrontal regions. Controlled auditory processing was associated with a distributed frontotemporal and subcortical dysfunction. Differences in activation between these two modes of auditory information processing were more pronounced in the comparison group than in the patient group.
doi:10.1176/appi.neuropsych.20.4.419
PMCID: PMC2709774  PMID: 19196926
21.  Functional magnetic resonance imaging measure of automatic and controlled auditory processing 
Neuroreport  2005;16(5):457-461.
Activity within fronto-striato-temporal regions during processing of unattended auditory deviant tones and an auditory target detection task was investigated using event-related functional magnetic resonance imaging. Activation within the middle frontal gyrus, inferior frontal gyrus, anterior cingulate gyrus, superior temporal gyrus, thalamus, and basal ganglia were analyzed for differences in activity patterns between the two stimulus conditions. Unattended deviant tones elicited robust activation in the superior temporal gyrus; by contrast, attended tones evoked stronger superior temporal gyrus activation and greater frontal and striatal activation. The results suggest that attention enhances neural activation evoked by auditory pitch deviance in auditory brain regions, possibly through top-down control from the dorsolateral prefrontal cortex involved in goal-directed selection and response generation.
PMCID: PMC2685199  PMID: 15770151
Auditory oddball; Automatic attention; Deviance detection; Prefrontal cortex; Superior temporal cortex
22.  The role of trauma-related distractors on neural systems for working memory and emotion processing in posttraumatic stress disorder 
Journal of psychiatric research  2008;43(8):809-817.
The relevance of emotional stimuli to threat and survival confers a privileged role in their processing. In PTSD, the ability of trauma-related information to divert attention is especially pronounced. Information unrelated to the trauma may also be highly distracting when it shares perceptual features with trauma material. Our goal was to study how trauma-related environmental cues modulate working memory networks in PTSD. We examined neural activity in participants performing a visual working memory task while distracted by task-irrelevant trauma and non-trauma material. Recent post-9/11 veterans were divided into a PTSD group (n = 22) and a trauma-exposed control group (n = 20) based on the Davidson trauma scale. Using fMRI, we measured hemodynamic change in response to emotional (trauma-related) and neutral distraction presented during the active maintenance period of a delayed-response working memory task. The goal was to examine differences in functional networks associated with working memory (dorsolateral prefrontal cortex and lateral parietal cortex) and emotion processing (amygdala, ventrolateral prefrontal cortex, and fusiform gyrus). The PTSD group showed markedly different neural activity compared to the trauma-exposed control group in response to task-irrelevant visual distractors. Enhanced activity in ventral emotion processing regions was associated with trauma distractors in the PTSD group, whereas activity in brain regions associated with working memory and attention regions was disrupted by distractor stimuli independent of trauma content. Neural evidence for the impact of distraction on working memory is consistent with PTSD symptoms of hypervigilance and general distractibility during goal-directed cognitive processing.
doi:10.1016/j.jpsychires.2008.10.014
PMCID: PMC2684984  PMID: 19091328
PTSD; fMRI; Working memory; Emotion processing; Cognitive control
23.  Neural systems for executive and emotional processing are modulated by symptoms of posttraumatic stress disorder in Iraq War veterans 
Psychiatry research  2008;162(1):59-72.
The symptom provocation paradigms generally used in neuroimaging studies of posttraumatic stress disorder (PTSD) have placed high demands on emotion processing but lacked cognitive processing, thereby limiting the ability to assess alterations in neural systems that subserve executive functions and their interactions with emotion processing. Thirty-nine veterans from Iraq and Afghanistan underwent functional MR imaging while exposed to emotional combat-related and neutral civilian scenes interleaved with an executive processing task. Contrast activation maps were regressed against PTSD symptoms as measured by the Davidson Trauma Scale. Activation for emotional compared to neutral stimuli was highly positively correlated with level of PTSD symptoms in ventral frontolimbic regions, notably the ventromedial prefrontal cortex, inferior frontal gyrus, and ventral anterior cingulate gyrus. Conversely, activation for the executive task was negatively correlated with PTSD symptoms in the dorsal executive network, notably the middle frontal gyrus, dorsal anterior cingulate gyrus, and inferior parietal lobule. Thus, there is a strong link between the subjectively-assessed behavioral phenomenology of PTSD and objective neurobiological markers. These findings extend the largely symptom provocation-based functional neuroanatomy to provide evidence that interrelated executive and emotional processing systems of the brain are differentially affected by PTSD symptomatology in recently deployed war veterans.
doi:10.1016/j.pscychresns.2007.07.007
PMCID: PMC2254508  PMID: 18093809
fMRI; executive processing; emotion processing; vmPFC; dlPFC; combat stress

Results 1-23 (23)