Search tips
Search criteria

Results 1-17 (17)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("Moreno, amir")
1.  Characterising two-pathogen competition in spatially structured environments 
Scientific Reports  2015;5:7895.
Different pathogens spreading in the same host population often generate complex co-circulation dynamics because of the many possible interactions between the pathogens and the host immune system, the host life cycle, and the space structure of the population. Here we focus on the competition between two acute infections and we address the role of host mobility and cross-immunity in shaping possible dominance/co-dominance regimes. Host mobility is modelled as a network of traveling flows connecting nodes of a metapopulation, and the two-pathogen dynamics is simulated with a stochastic mechanistic approach. Results depict a complex scenario where, according to the relation among the epidemiological parameters of the two pathogens, mobility can either be non-influential for the competition dynamics or play a critical role in selecting the dominant pathogen. The characterisation of the parameter space can be explained in terms of the trade-off between pathogen's spreading velocity and its ability to diffuse in a sparse environment. Variations in the cross-immunity level induce a transition between presence and absence of competition. The present study disentangles the role of the relevant biological and ecological factors in the competition dynamics, and provides relevant insights into the spatial ecology of infectious diseases.
PMCID: PMC4298724  PMID: 25600088
2.  Reputation drives cooperative behaviour and network formation in human groups 
Scientific Reports  2015;5:7843.
Cooperativeness is a defining feature of human nature. Theoreticians have suggested several mechanisms to explain this ubiquitous phenomenon, including reciprocity, reputation, and punishment, but the problem is still unsolved. Here we show, through experiments conducted with groups of people playing an iterated Prisoner's Dilemma on a dynamic network, that it is reputation what really fosters cooperation. While this mechanism has already been observed in unstructured populations, we find that it acts equally when interactions are given by a network that players can reconfigure dynamically. Furthermore, our observations reveal that memory also drives the network formation process, and cooperators assort more, with longer link lifetimes, the longer the past actions record. Our analysis demonstrates, for the first time, that reputation can be very well quantified as a weighted mean of the fractions of past cooperative acts and the last action performed. This finding has potential applications in collaborative systems and e-commerce.
PMCID: PMC4297950  PMID: 25598347
3.  A comparative analysis of spatial Prisoner's Dilemma experiments: Conditional cooperation and payoff irrelevance 
Scientific Reports  2014;4:4615.
We have carried out a comparative analysis of data collected in three experiments on Prisoner's Dilemmas on lattices available in the literature. We focus on the different ways in which the behavior of human subjects can be interpreted, in order to empirically narrow down the possibilities for behavioral rules. Among the proposed update dynamics, we find that the experiments do not provide significant evidence for non-innovative game dynamics such as imitate-the-best or pairwise comparison rules, whereas moody conditional cooperation is supported by the data from all three experiments. This conclusion questions the applicability of many theoretical models that have been proposed to understand human behavior in spatial Prisoner's Dilemmas. A rule compatible with all our experiments, moody conditional cooperation, suggests that there is no detectable influence of interaction networks on the emergence of cooperation in behavioral experiments.
PMCID: PMC3983604  PMID: 24722557
4.  Gender Differences in Cooperation: Experimental Evidence on High School Students 
PLoS ONE  2013;8(12):e83700.
The emergence of cooperation among unrelated human subjects is a long-standing conundrum that has been amply studied both theoretically and experimentally. Within the question, a less explored issue relates to the gender dependence of cooperation, which can be traced back to Darwin, who stated that "women are less selfish but men are more competitive". Indeed, gender has been shown to be relevant in several game theoretical paradigms of social cooperativeness, including prisoner's dilemma, snowdrift and ultimatum/dictator games, but there is no consensus as to which gender is more cooperative. We here contribute to this literature by analyzing the role of gender in a repeated Prisoners' Dilemma played by Spanish high-school students in both a square lattice and a heterogeneous network. While the experiment was conducted to shed light on the influence of networks on the emergence of cooperation, we benefit from the availability of a large dataset of more 1200 participants. We applied different standard econometric techniques to this dataset, including Ordinary Least Squares and Linear Probability models including random effects. All our analyses indicate that being male is negatively associated with the level of cooperation, this association being statistically significant at standard levels. We also obtain a gender difference in the level of cooperation when we control for the unobserved heterogeneity of individuals, which indicates that the gender gap in cooperation favoring female students is present after netting out this effect from other socio-demographics factors not controlled for in the experiment, and from gender differences in risk, social and competitive preferences.
PMCID: PMC3867463  PMID: 24367608
5.  Impact of Social Punishment on Cooperative Behavior in Complex Networks 
Scientific Reports  2013;3:3055.
Social punishment is a mechanism by which cooperative individuals spend part of their resources to penalize defectors. In this paper, we study the evolution of cooperation in 2-person evolutionary games on networks when a mechanism for social punishment is introduced. Specifically, we introduce a new kind of role, punisher, which is aimed at reducing the earnings of defectors by applying to them a social fee. Results from numerical simulations show that different equilibria allowing the three strategies to coexist are possible as well as that social punishment further enhance the robustness of cooperation. Our results are confirmed for different network topologies and two evolutionary games. In addition, we analyze the microscopic mechanisms that give rise to the observed macroscopic behaviors in both homogeneous and heterogeneous networks. Our conclusions might provide additional insights for understanding the roots of cooperation in social systems.
PMCID: PMC3808815  PMID: 24162105
6.  Host Mobility Drives Pathogen Competition in Spatially Structured Populations 
PLoS Computational Biology  2013;9(8):e1003169.
Interactions among multiple infectious agents are increasingly recognized as a fundamental issue in the understanding of key questions in public health regarding pathogen emergence, maintenance, and evolution. The full description of host-multipathogen systems is, however, challenged by the multiplicity of factors affecting the interaction dynamics and the resulting competition that may occur at different scales, from the within-host scale to the spatial structure and mobility of the host population. Here we study the dynamics of two competing pathogens in a structured host population and assess the impact of the mobility pattern of hosts on the pathogen competition. We model the spatial structure of the host population in terms of a metapopulation network and focus on two strains imported locally in the system and having the same transmission potential but different infectious periods. We find different scenarios leading to competitive success of either one of the strain or to the codominance of both strains in the system. The dominance of the strain characterized by the shorter or longer infectious period depends exclusively on the structure of the population and on the the mobility of hosts across patches. The proposed modeling framework allows the integration of other relevant epidemiological, environmental and demographic factors, opening the path to further mathematical and computational studies of the dynamics of multipathogen systems.
Author Summary
When multiple infectious agents circulate in a given population of hosts, they interact for the exploitation of susceptible hosts aimed at pathogen survival and maintenance. Such interaction is ruled by the combination of different mechanisms related to the biology of host-pathogen interaction, environmental conditions and host demography and behavior. We focus on pathogen competition and we investigate whether the mobility of hosts in a spatially structured environment can act as a selective driver for pathogen circulation. We use mathematical and computational models for disease transmission between hosts and for the mobility of hosts to study the competition between two pathogens providing each other full cross-immunity after infection. Depending on the rate of migration of hosts, competition results in the dominance of either one of the pathogens at the spatial level – though the two infectious agents are characterized by the same invasion potential at the single population scale – or cocirculation of both. These results highlight the importance of explicitly accounting for the spatial scale and for the different time scales involved (i.e. host mobility and spreading dynamics of the two pathogens) in the study of host-multipathogen systems.
PMCID: PMC3744403  PMID: 23966843
7.  Evolutionary dynamics of group interactions on structured populations: a review 
Interactions among living organisms, from bacteria colonies to human societies, are inherently more complex than interactions among particles and non-living matter. Group interactions are a particularly important and widespread class, representative of which is the public goods game. In addition, methods of statistical physics have proved valuable for studying pattern formation, equilibrium selection and self-organization in evolutionary games. Here, we review recent advances in the study of evolutionary dynamics of group interactions on top of structured populations, including lattices, complex networks and coevolutionary models. We also compare these results with those obtained on well-mixed populations. The review particularly highlights that the study of the dynamics of group interactions, like several other important equilibrium and non-equilibrium dynamical processes in biological, economical and social sciences, benefits from the synergy between statistical physics, network science and evolutionary game theory.
PMCID: PMC3565747  PMID: 23303223
cooperation; public goods; pattern formation; self-organization; coevolution
8.  Empathy Emerges Spontaneously in the Ultimatum Game: Small Groups and Networks 
PLoS ONE  2012;7(9):e43781.
The Ultimatum game, in which one subject proposes how to share a pot and the other has veto power on the proposal, in which case both lose everything, is a paradigmatic scenario to probe the degree of cooperation and altruism in human subjects. It has been shown that if individuals are empathic, i.e., they play the game having in mind how their opponent will react by offering an amount that they themselves would accept, then non-rational large offers well above the smallest possible ones are evolutionarily selected. We here show that empathy itself may be selected and need not be exogenously imposed provided that interactions take place only with a fraction of the total population, and that the role of proposer or responder is randomly changed from round to round. These empathic agents, that displace agents with independent (uncorrelated) offers and proposals, behave far from what is expected rationally, offering and accepting sizable fractions of the amount to be shared. Specific values for the typical offer depend on the details of the interacion network and on the existence of hubs, but they are almost always significantly larger than zero, indicating that the mechanism at work here is quite general and could explain the emergence of empathy in very many different contexts.
PMCID: PMC3458878  PMID: 23049740
9.  Topological effects of data incompleteness of gene regulatory networks 
BMC Systems Biology  2012;6:110.
The topological analysis of biological networks has been a prolific topic in network science during the last decade. A persistent problem with this approach is the inherent uncertainty and noisy nature of the data. One of the cases in which this situation is more marked is that of transcriptional regulatory networks (TRNs) in bacteria. The datasets are incomplete because regulatory pathways associated to a relevant fraction of bacterial genes remain unknown. Furthermore, direction, strengths and signs of the links are sometimes unknown or simply overlooked. Finally, the experimental approaches to infer the regulations are highly heterogeneous, in a way that induces the appearance of systematic experimental-topological correlations. And yet, the quality of the available data increases constantly.
In this work we capitalize on these advances to point out the influence of data (in)completeness and quality on some classical results on topological analysis of TRNs, specially regarding modularity at different levels.
In doing so, we identify the most relevant factors affecting the validity of previous findings, highlighting important caveats to future prokaryotic TRNs topological analysis.
PMCID: PMC3543246  PMID: 22920968
Biological networks; Transcriptional regulatory networks; Motifs significance; Community structure; Network superfamilies
10.  Human behavior in Prisoner's Dilemma experiments suppresses network reciprocity 
Scientific Reports  2012;2:325.
During the last few years, much research has been devoted to strategic interactions on complex networks. In this context, the Prisoner's Dilemma has become a paradigmatic model, and it has been established that imitative evolutionary dynamics lead to very different outcomes depending on the details of the network. We here report that when one takes into account the real behavior of people observed in the experiments, both at the mean-field level and on utterly different networks, the observed level of cooperation is the same. We thus show that when human subjects interact in a heterogeneous mix including cooperators, defectors and moody conditional cooperators, the structure of the population does not promote or inhibit cooperation with respect to a well mixed population.
PMCID: PMC3309394  PMID: 22439103
11.  The Dynamics of Protest Recruitment through an Online Network 
Scientific Reports  2011;1:197.
The recent wave of mobilizations in the Arab world and across Western countries has generated much discussion on how digital media is connected to the diffusion of protests. We examine that connection using data from the surge of mobilizations that took place in Spain in May 2011. We study recruitment patterns in the Twitter network and find evidence of social influence and complex contagion. We identify the network position of early participants (i.e. the leaders of the recruitment process) and of the users who acted as seeds of message cascades (i.e. the spreaders of information). We find that early participants cannot be characterized by a typical topological position but spreaders tend to be more central in the network. These findings shed light on the connection between online networks, social contagion, and collective dynamics, and offer an empirical test to the recruitment mechanisms theorized in formal models of collective action.
PMCID: PMC3240992  PMID: 22355712
12.  Structural and Dynamical Patterns on Online Social Networks: The Spanish May 15th Movement as a Case Study 
PLoS ONE  2011;6(8):e23883.
The number of people using online social networks in their everyday life is continuously growing at a pace never saw before. This new kind of communication has an enormous impact on opinions, cultural trends, information spreading and even in the commercial success of new products. More importantly, social online networks have revealed as a fundamental organizing mechanism in recent country-wide social movements. In this paper, we provide a quantitative analysis of the structural and dynamical patterns emerging from the activity of an online social network around the ongoing May 15th (15M) movement in Spain. Our network is made up by users that exchanged tweets in a time period of one month, which includes the birth and stabilization of the 15M movement. We characterize in depth the growth of such dynamical network and find that it is scale-free with communities at the mesoscale. We also find that its dynamics exhibits typical features of critical systems such as robustness and power-law distributions for several quantities. Remarkably, we report that the patterns characterizing the spreading dynamics are asymmetric, giving rise to a clear distinction between information sources and sinks. Our study represents a first step towards the use of data from online social media to comprehend modern societal dynamics.
PMCID: PMC3158778  PMID: 21886834
13.  Modeling human mobility responses to the large-scale spreading of infectious diseases 
Scientific Reports  2011;1:62.
Current modeling of infectious diseases allows for the study of realistic scenarios that include population heterogeneity, social structures, and mobility processes down to the individual level. The advances in the realism of epidemic description call for the explicit modeling of individual behavioral responses to the presence of disease within modeling frameworks. Here we formulate and analyze a metapopulation model that incorporates several scenarios of self-initiated behavioral changes into the mobility patterns of individuals. We find that prevalence-based travel limitations do not alter the epidemic invasion threshold. Strikingly, we observe in both synthetic and data-driven numerical simulations that when travelers decide to avoid locations with high levels of prevalence, this self-initiated behavioral change may enhance disease spreading. Our results point out that the real-time availability of information on the disease and the ensuing behavioral changes in the population may produce a negative impact on disease containment and mitigation.
PMCID: PMC3216549  PMID: 22355581
14.  Modeling Abnormal Priming in Alzheimer's Patients with a Free Association Network 
PLoS ONE  2011;6(8):e22651.
Alzheimer's Disease irremediably alters the proficiency of word search and retrieval processes even at its early stages. Such disruption can sometimes be paradoxical in specific language tasks, for example semantic priming. Here we focus in the striking side-effect of hyperpriming in Alzheimer's Disease patients, which has been well-established in the literature for a long time. Previous studies have evidenced that modern network theory can become a powerful complementary tool to gain insight in cognitive phenomena. Here, we first show that network modeling is an appropriate approach to account for semantic priming in normal subjects. Then we turn to priming in degraded cognition: hyperpriming can be readily understood in the scope of a progressive degradation of the semantic network structure. We compare our simulation results with previous empirical observations in diseased patients finding a qualitative agreement. The network approach presented here can be used to accommodate current theories about impaired cognition, and towards a better understanding of lexical organization in healthy and diseased patients.
PMCID: PMC3148236  PMID: 21829639
15.  The Transcriptional Regulatory Network of Mycobacterium tuberculosis 
PLoS ONE  2011;6(7):e22178.
Under the perspectives of network science and systems biology, the characterization of transcriptional regulatory (TR) networks beyond the context of model organisms offers a versatile tool whose potential remains yet mainly unexplored. In this work, we present an updated version of the TR network of Mycobacterium tuberculosis (M.tb), which incorporates newly characterized transcriptional regulations coming from 31 recent, different experimental works available in the literature. As a result of the incorporation of these data, the new network doubles the size of previous data collections, incorporating more than a third of the entire genome of the bacterium. We also present an exhaustive topological analysis of the new assembled network, focusing on the statistical characterization of motifs significances and the comparison with other model organisms. The expanded M.tb transcriptional regulatory network, considering its volume and completeness, constitutes an important resource for diverse tasks such as dynamic modeling of gene expression and signaling processes, computational reliability determination or protein function prediction, being the latter of particular relevance, given that the function of only a small percent of the proteins of M.tb is known.
PMCID: PMC3139605  PMID: 21818301
16.  From Modular to Centralized Organization of Synchronization in Functional Areas of the Cat Cerebral Cortex 
PLoS ONE  2010;5(8):e12313.
Recent studies have pointed out the importance of transient synchronization between widely distributed neural assemblies to understand conscious perception. These neural assemblies form intricate networks of neurons and synapses whose detailed map for mammals is still unknown and far from our experimental capabilities. Only in a few cases, for example the C. elegans, we know the complete mapping of the neuronal tissue or its mesoscopic level of description provided by cortical areas. Here we study the process of transient and global synchronization using a simple model of phase-coupled oscillators assigned to cortical areas in the cerebral cat cortex. Our results highlight the impact of the topological connectivity in the developing of synchronization, revealing a transition in the synchronization organization that goes from a modular decentralized coherence to a centralized synchronized regime controlled by a few cortical areas forming a Rich-Club connectivity pattern.
PMCID: PMC2928734  PMID: 20865046
17.  Complex Cooperative Networks from Evolutionary Preferential Attachment 
PLoS ONE  2008;3(6):e2449.
In spite of its relevance to the origin of complex networks, the interplay between form and function and its role during network formation remains largely unexplored. While recent studies introduce dynamics by considering rewiring processes of a pre-existent network, we study network growth and formation by proposing an evolutionary preferential attachment model, its main feature being that the capacity of a node to attract new links depends on a dynamical variable governed in turn by the node interactions. As a specific example, we focus on the problem of the emergence of cooperation by analyzing the formation of a social network with interactions given by the Prisoner's Dilemma. The resulting networks show many features of real systems, such as scale-free degree distributions, cooperative behavior and hierarchical clustering. Interestingly, results such as the cooperators being located mostly on nodes of intermediate degree are very different from the observations of cooperative behavior on static networks. The evolutionary preferential attachment mechanism points to an evolutionary origin of scale-free networks and may help understand similar feedback problems in the dynamics of complex networks by appropriately choosing the game describing the interaction of nodes.
PMCID: PMC2413409  PMID: 18560601

Results 1-17 (17)