Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Autism-Associated Mutations in ProSAP2/Shank3 Impair Synaptic Transmission and Neurexin–Neuroligin-Mediated Transsynaptic Signaling 
The Journal of Neuroscience  2012;32(43):14966-14978.
Mutations in several postsynaptic proteins have recently been implicated in the molecular pathogenesis of autism and autism spectrum disorders (ASDs), including Neuroligins, Neurexins, and members of the ProSAP/Shank family, thereby suggesting that these genetic forms of autism may share common synaptic mechanisms. Initial studies of ASD-associated mutations in ProSAP2/Shank3 support a role for this protein in glutamate receptor function and spine morphology, but these synaptic phenotypes are not universally penetrant, indicating that other core facets of ProSAP2/Shank3 function must underlie synaptic deficits in patients with ASDs. In the present study, we have examined whether the ability of ProSAP2/Shank3 to interact with the cytoplasmic tail of Neuroligins functions to coordinate pre/postsynaptic signaling through the Neurexin–Neuroligin signaling complex in hippocampal neurons of Rattus norvegicus. Indeed, we find that synaptic levels of ProSAP2/Shank3 regulate AMPA and NMDA receptor-mediated synaptic transmission and induce widespread changes in the levels of presynaptic and postsynaptic proteins via Neurexin–Neuroligin transsynaptic signaling. ASD-associated mutations in ProSAP2/Shank3 disrupt not only postsynaptic AMPA and NMDA receptor signaling but also interfere with the ability of ProSAP2/Shank3 to signal across the synapse to alter presynaptic structure and function. These data indicate that ASD-associated mutations in a subset of synaptic proteins may target core cellular pathways that coordinate the functional matching and maturation of excitatory synapses in the CNS.
PMCID: PMC3752148  PMID: 23100419
2.  Synaptic profiles during neurite extension, refinement and retraction in the developing cochlea 
Neural Development  2012;7:38.
During development, excess synapses form between the central and peripheral nervous systems that are then eliminated to achieve correct connectivity. In the peripheral auditory system, the developing type I spiral ganglion afferent fibres undergo a dramatic re-organisation, initially forming connections with both sensory inner hair cells (IHCs) and outer hair cells (OHCs). The OHC connections are then selectively eliminated, leaving sparse innervation by type II afferent fibres, whilst the type I afferent synapses with IHCs are consolidated.
We examined the molecular makeup of the synaptic contacts formed onto the IHCs and OHCs during this period of afferent fibre remodelling. We observed that presynaptic ribbons initially form at all the afferent neurite contacts, i.e. not only at the expected developing IHC-type I fibre synapses but also at OHCs where type I fibres temporarily contact. Moreover, the transient contacts forming onto OHCs possess a broad set of pre- and postsynaptic proteins, suggesting that functional synaptic connections are formed prior to the removal of type I fibre innervation. AMPA-type glutamate receptor subunits were transiently observed at the base of the OHCs, with their downregulation occurring in parallel with the withdrawal of type I fibres, dispersal of presynaptic ribbons, and downregulation of the anchoring proteins Bassoon and Shank. Conversely, at developing type I afferent IHC synapses, the presence of pre- and postsynaptic scaffold proteins was maintained, with differential plasticity in AMPA receptor subunits observed and AMPA receptor subunit composition changing around hearing onset.
Overall our data show a differential balance in the patterns of synaptic proteins at developing afferent IHC versus OHC synapses that likely reflect their stable versus transient fates.
PMCID: PMC3545844  PMID: 23217150
Cochlea; Synapse; Glutamate receptors; Synaptic ribbons; Hair cells; Spiral ganglion
3.  Synaptic SAP97 Isoforms Regulate AMPA Receptor Dynamics and Access to Presynaptic Glutamate 
The synaptic insertion of GluR1-containing AMPA-type glutamate receptors (AMPARs) is critical for synaptic plasticity. However, mechanisms responsible for GluR1 insertion and retention at the synapse are unclear. The synapse-associated protein SAP97 directly binds GluR1 and participates in its forward trafficking from the Golgi network to the plasma membrane. Whether SAP97 also plays a role in scaffolding GluR1 at the postsynaptic membrane is controversial, due to its expression as a collection of alternatively spliced isoforms with ill-defined spatial and temporal distributions. In the present study, we have used live imaging and electrophysiology to demonstrate that two postsynaptic, N-terminal isoforms of SAP97 directly modulate the levels, dynamics, and function of synaptic GluR1-containing AMPARs. Specifically, the unique N-terminal domains confer distinct subsynaptic localizations onto SAP97, targeting the palmitoylated α-isoform to the postsynaptic density (PSD) and the L27 domain-containing β-isoform primarily to non-PSD, perisynaptic regions. Consequently, α- and βSAP97 differentially influence the subsynaptic localization and dynamics of AMPARs by creating binding sites for GluR1-containing receptors within their respective subdomains. These results indicate that N-terminal splicing of SAP97 can control synaptic strength by regulating the distribution of AMPARs, and hence their responsiveness to presynaptically released glutamate.
PMCID: PMC3230533  PMID: 19357261
AMPAR; FRAP; GluR1; palmitoylation; SAP97; PSD-95
4.  4D Super-Resolution Microscopy with Conventional Fluorophores and Single Wavelength Excitation in Optically Thick Cells and Tissues 
PLoS ONE  2011;6(5):e20645.
Optical super-resolution imaging of fluorescently stained biological samples is rapidly becoming an important tool to investigate protein distribution at the molecular scale. It is therefore important to develop practical super-resolution methods that allow capturing the full three-dimensional nature of biological systems and also can visualize multiple protein species in the same sample.
Methodology/Principal Findings
We show that the use of a combination of conventional near-infrared dyes, such as Alexa 647, Alexa 680 and Alexa 750, all excited with a 671 nm diode laser, enables 3D multi-colour super-resolution imaging of complex biological samples. Optically thick samples, including human tissue sections, cardiac rat myocytes and densely grown neuronal cultures were imaged with lateral resolutions of ∼15 nm (std. dev.) while reducing marker cross-talk to <1%. Using astigmatism an axial resolution of ∼65 nm (std. dev.) was routinely achieved. The number of marker species that can be distinguished depends on the mean photon number of single molecule events. With the typical photon yields from Alexa 680 of ∼2000 up to 5 markers may in principle be resolved with <2% crosstalk.
Our approach is based entirely on the use of conventional, commercially available markers and requires only a single laser. It provides a very straightforward way to investigate biological samples at the nanometre scale and should help establish practical 4D super-resolution microscopy as a routine research tool in many laboratories.
PMCID: PMC3105105  PMID: 21655189
5.  SAP97 and CASK mediate sorting of N-Methyl-D-Aspartate Receptors through a novel secretory pathway 
Nature neuroscience  2009;12(8):1011-1019.
Synaptic plasticity is dependent upon the differential sorting, delivery and retention of neurotransmitter receptors, yet the mechanisms underlying these processes are poorly understood. In the present study, we have found that differential sorting of glutamate receptor subtypes begins within the endoplasmic reticulum (ER) of rat hippocampal neurons. While AMPARs are trafficked to the plasma membrane via the conventional somatic Golgi network, NMDARs are diverted from the somatic ER into a specialized ER sub-compartment that bypasses somatic Golgi, merging instead with dendritic Golgi outposts. Intriguingly, this ER sub-compartment is composed of highly mobile vesicles containing the NMDAR subunits NR1 and NR2B, the microtubule-dependent motor protein KIF17, and the postsynaptic adaptor proteins CASK and SAP97. Furthermore, our data demonstrate that the retention and trafficking of NMDARs within this ER sub-compartment requires both CASK and SAP97. These data indicate that NMDARs are sorted away from AMPARs via a non-conventional secretory pathway that utilizes dendritic Golgi outposts.
PMCID: PMC2779056  PMID: 19620977
Glutamate receptors; MAGUK proteins; NMDA receptors; protein trafficking; SAP97; CASK; shRNA; Endoplamic reticulum; Dendritic Golgi
6.  Dynamin-dependent NMDAR endocytosis during LTD and its dependence on synaptic state 
BMC Neuroscience  2005;6:48.
The N-methyl-D-aspartate (NMDA)-type glutamate receptor expressed at excitatory glutamatergic synapses is required for learning and memory and is critical for normal brain function. At a cellular level, this receptor plays a pivotal role in triggering and controlling synaptic plasticity. While it has been long recognized that this receptor plays a regulatory role, it was considered by many to be itself immune to synaptic activity-induced plasticity. More recently, we and others have shown that NMDA receptor-mediated synaptic responses can be subject to activity-dependent depression.
Here we show that depression of synaptic transmission mediated by NMDA receptors displays a state-dependence in its plasticity; NMDA receptors are resistant to activity-induced changes at silent and recently-silent synapses. Once synapses transition to the active state however, NMDA receptors become fully 'plastic'. This state-dependence is identical to that shown by the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor. Furthermore, the down-regulation of NMDAR-mediated responses during synaptic depression is prevented by disruption of dynamin-dependent endocytosis.
NMDA receptor-mediated synaptic responses are plastic in a state-dependent manner. Depending on the plasticity state in which a synapse currently resides, NMDA receptors will either be available or unavailable for down-regulation. The mechanism underlying the down-regulation of NMDA receptor-mediated synaptic responses is endocytosis of the NMDA receptor. Other potential mechanisms, such as receptor diffusion along the plane of the membrane, or changes in the activity of the channel are not supported. The mechanisms of AMPA receptor and NMDA receptor endocytosis appear to be tightly coupled, as both are either available or unavailable for endocytosis in the same synaptic states. Endocytosis of NMDA receptors would serve as a potent mechanism for metaplasticity. Such state-dependent regulation of NMDAR endocytosis will provide fundamental control over downstream NMDA receptor-dependent plasticity of neuronal circuitry.
PMCID: PMC1187896  PMID: 16042781
7.  Adult Human Brain Neural Progenitor Cells (NPCs) and Fibroblast-Like Cells Have Similar Properties In Vitro but Only NPCs Differentiate into Neurons 
PLoS ONE  2012;7(6):e37742.
The ability to culture neural progenitor cells from the adult human brain has provided an exciting opportunity to develop and test potential therapies on adult human brain cells. To achieve a reliable and reproducible adult human neural progenitor cell (AhNPC) culture system for this purpose, this study fully characterized the cellular composition of the AhNPC cultures, as well as the possible changes to this in vitro system over prolonged culture periods. We isolated cells from the neurogenic subventricular zone/hippocampus (SVZ/HP) of the adult human brain and found a heterogeneous culture population comprised of several types of post-mitotic brain cells (neurons, astrocytes, and microglia), and more importantly, two distinct mitotic cell populations; the AhNPCs, and the fibroblast-like cells (FbCs). These two populations can easily be mistaken for a single population of AhNPCs, as they both proliferate under AhNPC culture conditions, form spheres and express neural progenitor cell and early neuronal markers, all of which are characteristics of AhNPCs in vitro. However, despite these similarities under proliferating conditions, under neuronal differentiation conditions, only the AhNPCs differentiated into functional neurons and glia. Furthermore, AhNPCs showed limited proliferative capacity that resulted in their depletion from culture by 5–6 passages, while the FbCs, which appear to be from a neurovascular origin, displayed a greater proliferative capacity and dominated the long-term cultures. This gradual change in cellular composition resulted in a progressive decline in neurogenic potential without the apparent loss of self-renewal in our cultures. These results demonstrate that while AhNPCs and FbCs behave similarly under proliferative conditions, they are two different cell populations. This information is vital for the interpretation and reproducibility of AhNPC experiments and suggests an ideal time frame for conducting AhNPC-based experiments.
PMCID: PMC3366988  PMID: 22675489

Results 1-7 (7)