Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Systematic Comparison of the Effects of Alpha-synuclein Mutations on Its Oligomerization and Aggregation 
PLoS Genetics  2014;10(11):e1004741.
Aggregation of alpha-synuclein (ASYN) in Lewy bodies and Lewy neurites is the typical pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. Furthermore, mutations in the gene encoding for ASYN are associated with familial and sporadic forms of PD, suggesting this protein plays a central role in the disease. However, the precise contribution of ASYN to neuronal dysfunction and death is unclear. There is intense debate about the nature of the toxic species of ASYN and little is known about the molecular determinants of oligomerization and aggregation of ASYN in the cell. In order to clarify the effects of different mutations on the propensity of ASYN to oligomerize and aggregate, we assembled a panel of 19 ASYN variants and compared their behaviour. We found that familial mutants linked to PD (A30P, E46K, H50Q, G51D and A53T) exhibited identical propensities to oligomerize in living cells, but had distinct abilities to form inclusions. While the A30P mutant reduced the percentage of cells with inclusions, the E46K mutant had the opposite effect. Interestingly, artificial proline mutants designed to interfere with the helical structure of the N-terminal domain, showed increased propensity to form oligomeric species rather than inclusions. Moreover, lysine substitution mutants increased oligomerization and altered the pattern of aggregation. Altogether, our data shed light into the molecular effects of ASYN mutations in a cellular context, and established a common ground for the study of genetic and pharmacological modulators of the aggregation process, opening new perspectives for therapeutic intervention in PD and other synucleinopathies.
Author Summary
The accumulation of aggregated proteins in the brain is common across several neurodegenerative disorders. In Parkinson's disease (PD), the protein alpha-synuclein (ASYN) is the major component of aggregates known as Lewy bodies. It is currently unclear whether protein aggregates are protective or detrimental for neuronal function and survival. The present hypothesis is that smaller aggregated species, known as oligomers, might constitute the toxic forms of ASYN. Several mutations in ASYN cause familial forms of PD. In the laboratory, artificial mutations have been designed to enable the study of the aggregation process. However, different studies relied on the use of different model systems, compromising the interpretation of the effects of the mutations. Here, we addressed this by (i) assembling a panel of 19 ASYN variants and (ii) by performing a systematic comparison of the effects of the mutations in mammalian cell models. Interestingly, our study enabled us to correlate oligomerization and aggregation of ASYN in cells. Altogether, our data shed light into the molecular determinants of ASYN aggregation, opening novel avenues for the identification of modulators of ASYN aggregation, which conceal great hopes towards the development of strategies for therapeutic intervention in PD and other synucleinopathies.
PMCID: PMC4230739  PMID: 25393002
2.  Unrecognized vitamin D3 deficiency is common in Parkinson disease 
Neurology  2013;81(17):1531-1537.
To conclusively test for a specific association between the biological marker 25-hydroxy-vitamin D3, a transcriptionally active hormone produced in human skin and liver, and the prevalence and severity of Parkinson disease (PD).
We used liquid chromatography/tandem mass spectrometry to establish an association specifically between deficiency of 25-hydroxy-vitamin D3 and PD in a cross-sectional and longitudinal case-control study of 388 patients (mean Hoehn and Yahr stage of 2.1 ± 0.6) and 283 control subjects free of neurologic disease nested in the Harvard Biomarker Study.
Plasma levels of 25-hydroxy-vitamin D3 were associated with PD in both univariate and multivariate analyses with p values = 0.0034 and 0.047, respectively. Total 25-hydroxy-vitamin D levels, the traditional composite measure of endogenous and exogenous vitamin D, were deficient in 17.6% of patients with PD compared with 9.3% of controls. Low 25-hydroxy-vitamin D3 as well as total 25-hydroxy-vitamin D levels were correlated with higher total Unified Parkinson’s Disease Rating Scale scores at baseline and during follow-up.
Our study reveals an association between 25-hydroxy-vitamin D3 and PD and suggests that thousands of patients with PD in North America alone may be vitamin D–deficient. This finding has immediate relevance for individual patients at risk of falls as well as public health, and warrants further investigation into the mechanism underlying this association.
PMCID: PMC3888173  PMID: 24068787
3.  High prevalence of NMDA receptor IgA/IgM antibodies in different dementia types 
To retrospectively determine the frequency of N-Methyl-D-Aspartate (NMDA) receptor (NMDAR) autoantibodies in patients with different forms of dementia.
Clinical characterization of 660 patients with dementia, neurodegenerative disease without dementia, other neurological disorders and age-matched healthy controls combined with retrospective analysis of serum or cerebrospinal fluid (CSF) for the presence of NMDAR antibodies. Antibody binding to receptor mutants and the effect of immunotherapy were determined in a subgroup of patients.
Serum NMDAR antibodies of IgM, IgA, or IgG subtypes were detected in 16.1% of 286 dementia patients (9.5% IgM, 4.9% IgA, and 1.7% IgG) and in 2.8% of 217 cognitively healthy controls (1.9% IgM and 0.9% IgA). Antibodies were rarely found in CSF. The highest prevalence of serum antibodies was detected in patients with “unclassified dementia” followed by progressive supranuclear palsy, corticobasal syndrome, Parkinson’s disease-related dementia, and primary progressive aphasia. Among the unclassified dementia group, 60% of 20 patients had NMDAR antibodies, accompanied by higher frequency of CSF abnormalities, and subacute or fluctuating disease progression. Immunotherapy in selected prospective cases resulted in clinical stabilization, loss of antibodies, and improvement of functional imaging parameters. Epitope mapping showed varied determinants in patients with NMDAR IgA-associated cognitive decline.
Serum IgA/IgM NMDAR antibodies occur in a significant number of patients with dementia. Whether these antibodies result from or contribute to the neurodegenerative disorder remains unknown, but our findings reveal a subgroup of patients with high antibody levels who can potentially benefit from immunotherapy.
PMCID: PMC4241809  PMID: 25493273
4.  Biomarkers in biological fluids for dementia with Lewy bodies 
Dementia with Lewy bodies (DLB) has become the second most common neurodegenerative dementia due to demographic ageing. Differential diagnosis is still troublesome especially in early stages of the disease, since there is a great clinical and neuropathological overlap primarily with Alzheimer’s disease and Parkinson’s disease. Therefore, more specific biomarkers, not only for scientific reasons but also for clinical therapeutic decision-making, are urgently needed. In this review, we summarize the knowledge on fluid biomarkers for DLB, derived predominantly from cerebrospinal fluid. We discuss the value of well-defined markers (β-amyloid, (phosphorylated) tau, α-synuclein) as well as some promising ‘upcoming’ substances, which still have to be further evaluated.
PMCID: PMC4255553  PMID: 25478030
5.  Association of Cerebrospinal Fluid β-Amyloid 1-42, T-tau, P-tau181, and α-Synuclein Levels With Clinical Features of Drug-Naive Patients With Early Parkinson Disease 
JAMA neurology  2013;70(10):1277-1287.
We observed a significant correlation between cerebrospinal fluid (CSF) levels of tau proteins and α-synuclein, but not β-amyloid 1–42 (Aβ1–42), and lower concentration of CSF biomarkers, as compared with healthy controls, in a cohort of entirely untreated patients with Parkinson disease (PD) at the earliest stage of the disease studied so far.
To evaluate the baseline characteristics and relationship to clinical features of CSF biomarkers (Aβ1–42, total tau [T-tau], tau phosphorylated at threonine 181 [P-tau181], and α-synuclein) in drug-naive patients with early PD and demographically matched healthy controls enrolled in the Parkinson’s Progression Markers Initiative (PPMI) study.
Design, Setting, and Participants
Cross-sectional study of the initial 102 research volunteers (63 patients with PD and 39 healthy controls) of the PPMI cohort.
Main Outcomes and Measures
The CSF biomarkers were measured by INNO-BIA AlzBio3 immunoassay (Aβ1–42, T-tau, and P-tau181; Innogenetics Inc) or by enzyme-linked immunosorbent assay (α-synuclein). Clinical features including diagnosis, demographic characteristics, motor, neuropsychiatric, and cognitive assessments, and DaTscan were systematically assessed according to the PPMI study protocol.
Slightly, but significantly, lower levels of Aβ1–42, T-tau, P-tau181, α-synuclein, and T-tau/Aβ1–42 were seen in subjects with PD compared with healthy controls but with a marked overlap between groups. Using multivariate regression analysis, we found that lower Aβ1–42 and P-tau181 levels were associated with PD diagnosis and that decreased CSF T-tau and α-synuclein were associated with increased motor severity. Notably, when we classified patients with PD by their motor phenotypes, lower CSF Aβ1–42 and P-tau181 concentrations were associated with the postural instability–gait disturbance–dominant phenotype but not with the tremor-dominant or intermediate phenotype. Finally, we found a significant correlation of the levels of α-synuclein with the levels of T-tau and P-tau181.
Conclusions and Relevance
In this first report of CSF biomarkers in PPMI study subjects, we found that measures of CSF Aβ1–42, T-tau, P-tau181, and α-synuclein have prognostic and diagnostic potential in early-stage PD. Further investigations using the entire PPMI cohort will test the predictive performance of CSF biomarkers for PD progression.
PMCID: PMC4034348  PMID: 23979011
6.  Characterizing mild cognitive impairment in incident Parkinson disease 
Neurology  2014;82(4):308-316.
To describe the frequency of mild cognitive impairment (MCI) in Parkinson disease (PD) in a cohort of newly diagnosed incident PD cases and the associations with a panel of biomarkers.
Between June 2009 and December 2011, 219 subjects with PD and 99 age-matched controls participated in clinical and neuropsychological assessments as part of a longitudinal observational study. Consenting individuals underwent structural MRI, lumbar puncture, and genotyping for common variants of COMT, MAPT, SNCA, BuChE, EGF, and APOE. PD-MCI was defined with reference to the new Movement Disorder Society criteria.
The frequency of PD-MCI was 42.5% using level 2 criteria at 1.5 SDs below normative values. Memory impairment was the most common domain affected, with 15.1% impaired at 1.5 SDs. Depression scores were significantly higher in those with PD-MCI than the cognitively normal PD group. A significant correlation was found between visual Pattern Recognition Memory and cerebrospinal β-amyloid 1–42 levels (β standardized coefficient = 0.350; p = 0.008) after controlling for age and education in a linear regression model, with lower β-amyloid 1–42 and 1–40 levels observed in those with PD-MCI. Voxel-based morphometry did not reveal any areas of significant gray matter loss in participants with PD-MCI compared with controls, and no specific genotype was associated with PD-MCI at the 1.5-SD threshold.
In a large cohort of newly diagnosed PD participants, PD-MCI is common and significantly correlates with lower cerebrospinal β-amyloid 1–42 and 1–40 levels. Future longitudinal studies should enable us to determine those measures predictive of cognitive decline.
PMCID: PMC3929202  PMID: 24363137
7.  Niemann-Pick C Disease Gene Mutations and Age-Related Neurodegenerative Disorders 
PLoS ONE  2013;8(12):e82879.
Niemann-Pick type C (NPC) disease is a rare autosomal-recessively inherited lysosomal storage disorder caused by mutations in NPC1 (95%) or NPC2. Given the highly variable phenotype, diagnosis is challenging and particularly late-onset forms with predominantly neuropsychiatric presentations are likely underdiagnosed. Pathophysiologically, genetic alterations compromising the endosomal/lysosomal system are linked with age-related neurodegenerative disorders. We sought to examine a possible association of rare sequence variants in NPC1 and NPC2 with Parkinson's disease (PD), frontotemporal lobar degeneration (FTLD) and progressive supranuclear palsy (PSP), and to genetically determine the proportion of potentially misdiagnosed NPC patients in these neurodegenerative conditions. By means of high-resolution melting, we screened the coding regions of NPC1 and NPC2 for rare genetic variation in a homogenous German sample of patients clinically diagnosed with PD (n = 563), FTLD (n = 133) and PSP (n = 94), and 846 population-based controls. The frequencies of rare sequence variants in NPC1/2 did not differ significantly between patients and controls. Disease-associated NPC1/2 mutations were found in six PD patients (1.1%) and seven control subjects (0.8%), but not in FTLD or PSP. All rare variation was detected in the heterozygous state and no compound heterozygotes were observed. Our data do not support the hypothesis that rare NPC1/2 variants confer susceptibility for PD, FTLD, or PSP in the German population. Misdiagnosed NPC patients were not present in our samples. However, further assessment of NPC disease genes in age-related neurodegeneration is warranted.
PMCID: PMC3875432  PMID: 24386122
8.  Rare variants in LRRK1 and Parkinson's disease 
Neurogenetics  2013;15(1):49-57.
Approximately 20 % of individuals with Parkinson's disease (PD) report a positive family history. Yet, a large portion of causal and disease-modifying variants is still unknown. We used exome sequencing in two affected individuals from a family with late-onset PD to identify 15 potentially causal variants. Segregation analysis and frequency assessment in 862 PD cases and 1,014 ethnically matched controls highlighted variants in EEF1D and LRRK1 as the best candidates. Mutation screening of the coding regions of these genes in 862 cases and 1,014 controls revealed several novel non-synonymous variants in both genes in cases and controls. An in silico multi-model bioinformatics analysis was used to prioritize identified variants in LRRK1 for functional follow-up. However, protein expression, subcellular localization, and cell viability were not affected by the identified variants. Although it has yet to be proven conclusively that variants in LRRK1 are indeed causative of PD, our data strengthen a possible role for LRRK1 in addition to LRRK2 in the genetic underpinnings of PD but, at the same time, highlight the difficulties encountered in the study of rare variants identified by next-generation sequencing in diseases with autosomal dominant or complex patterns of inheritance.
Electronic supplementary material
The online version of this article (doi:10.1007/s10048-013-0383-8) contains supplementary material, which is available to authorized users.
PMCID: PMC3968516  PMID: 24241507
Parkinson's disease; LRRK1; EEF1D; Exome sequencing
9.  Rare Variants in PLXNA4 and Parkinson’s Disease 
PLoS ONE  2013;8(11):e79145.
Approximately 20% of individuals with Parkinson’s disease (PD) report a positive family history. Yet, a large portion of causal and disease-modifying variants is still unknown. We used exome sequencing in two affected individuals from a family with late-onset familial PD followed by frequency assessment in 975 PD cases and 1014 ethnically-matched controls and linkage analysis to identify potentially causal variants. Based on the predicted penetrance and the frequencies, a variant in PLXNA4 proved to be the best candidate and PLXNA4 was screened for additional variants in 862 PD cases and 940 controls, revealing an excess of rare non-synonymous coding variants in PLXNA4 in individuals with PD. Although we cannot conclude that the variant in PLXNA4 is indeed the causative variant, these findings are interesting in the light of a surfacing role of axonal guidance mechanisms in neurodegenerative disorders but, at the same time, highlight the difficulties encountered in the study of rare variants identified by next-generation sequencing in diseases with autosomal dominant or complex patterns of inheritance.
PMCID: PMC3823607  PMID: 24244438
10.  MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity 
Neuro-Oncology  2012;14(6):689-700.
An accurate, nonsurgical diagnostic test for brain tumors is currently unavailable, and the methods of monitoring disease progression are not fully reliable. MicroRNA profiling of biological fluids has recently emerged as a diagnostic tool for several pathologic conditions. Here we tested whether microRNA profiling of cerebrospinal fluid (CSF) enables detection of glioblastoma, discrimination between glioblastoma and metastatic brain tumors, and reflects disease activity. We determined CSF levels of several cancer-associated microRNAs for 118 patients diagnosed with different types of brain cancers and nonneoplastic neuropathologies by quantitative reverse transcription PCR analysis. The levels of miR-10b and miR-21 are found significantly increased in the CSF of patients with glioblastoma and brain metastasis of breast and lung cancer, compared with tumors in remission and a variety of nonneoplastic conditions. Members of the miR-200 family are highly elevated in the CSF of patients with brain metastases but not with any other pathologic conditions, allowing discrimination between glioblastoma and metastatic brain tumors. Quantification of as few as 7 microRNAs in CSF enables differential recognition of glioblastoma and metastatic brain cancer using computational machine learning tools (Support Vector Machine) with high accuracy (91%–99%) on a test set of samples. Furthermore, we show that disease activity and treatment response can be monitored by longitudinal microRNA profiles in the CSF of glioblastoma and non–small cell lung carcinoma patients. This study demonstrates that microRNA-based detection of brain malignancies can be reliably performed and that microRNAs in CSF can serve as biomarkers of treatment response in brain cancers.
PMCID: PMC3367845  PMID: 22492962
biomarkers; brain metastasis; cerebrospinal fluid; glioblastoma; leptomeningeal metastasis; microRNA
11.  Biochemical Pre-motor Biomarkers for Parkinson Disease 
A biomarker is a biological characteristic that is objectively measured and evaluated as an indicator of normal biological or pathologic processes or of pharmacologic responses to a therapeutic intervention. We review the current status on target protein biomarkers (e.g. total/oligomeric α-synuclein and DJ-1) in cerebrospinal fluid, as well as on unbiased processes that can be used to discover novel biomarkers. We also give details about strategies towards potential populations/models and technologies, including the need for standardized sampling techniques, to pursue the identification of new biochemical markers in the pre-motor stage of Parkinson disease in the future.
PMCID: PMC3428741  PMID: 22508282
Biomarkers; genomics; metabolomics; Parkinson disease; pre-motor; proteomics
12.  α-Synuclein in human cerebrospinal fluid is principally derived from neurons of the central nervous system 
Journal of Neural Transmission  2012;119(7):739-746.
The source of Parkinson disease-linked α-synuclein (aSyn) in human cerebrospinal fluid (CSF) remains unknown. We decided to measure the concentration of aSyn and its gradient in human CSF specimens and compared it with serum to explore its origin. We correlated aSyn concentrations in CSF versus serum (QaSyn) to the albumin quotient (Qalbumin) to evaluate its relation to blood–CSF barrier function. We also compared aSyn with several other CSF constituents of either central or peripheral sources (or both) including albumin, neuron-specific enolase, β-trace protein and total protein content. Finally, we examined whether aSyn is present within the structures of the choroid plexus (CP). We observed that QaSyn did not rise or fall with Qalbumin values, a relative measure of blood–CSF barrier integrity. In our CSF gradient analyses, aSyn levels decreased slightly from rostral to caudal fractions, in parallel to the recorded changes for neuron-specific enolase; the opposite trend was recorded for total protein, albumin and β-trace protein. The latter showed higher concentrations in caudal CSF fractions due to the diffusion-mediated transfer of proteins from blood and leptomeninges into CSF in the lower regions of the spine. In postmortem sections of human brain, we detected highly variable aSyn reactivity within the epithelial cell layer of CP in patients diagnosed with a range of neurological diseases; however, in sections of mice that express only human SNCA alleles (and in those without any Snca gene expression), we detected no aSyn signal in the epithelial cells of the CP. We conclude from these complementary results that despite its higher levels in peripheral blood products, neurons of the brain and spinal cord represent the principal source of aSyn in human CSF.
PMCID: PMC3378837  PMID: 22426833
α-Synuclein; Cerebrospinal fluid; Blood–CSF barrier; Biomarker; Choroid plexus
13.  Combined Analysis of CSF Tau, Aβ42, Aβ1–42% and Aβ1–40ox% in Alzheimer's Disease, Dementia with Lewy Bodies and Parkinson's Disease Dementia 
We studied the diagnostic value of CSF Aβ42/tau versus low Aβ1–42% and high Aβ1–40ox% levels for differential diagnosis of Alzheimer's disease (AD) and dementia with Lewy bodies (DLB), respectively. CSF of 45 patients with AD, 15 with DLB, 21 with Parkinson's disease dementia (PDD), and 40 nondemented disease controls (NDC) was analyzed by Aβ-SDS-PAGE/immunoblot and ELISAs (Aβ42 and tau). Aβ42/tau lacked specificity in discriminating AD from DLB and PDD. Best discriminating biomarkers were Aβ1–42% and Aβ1–40ox% for AD and DLB, respectively. AD and DLB could be differentiated by both Aβ1–42% and Aβ1–40ox% with an accuracy of 80% at minimum. Thus, we consider Aβ1–42% and Aβ1–40ox% to be useful biomarkers for AD and DLB, respectively. We propose further studies on the integration of Aβ1–42% and Aβ1–40ox% into conventional assay formats. Moreover, future studies should investigate the combination of Aβ1–40ox% and CSF alpha-synuclein for the diagnosis of DLB.
PMCID: PMC2938459  PMID: 20862375

Results 1-13 (13)