Search tips
Search criteria

Results 1-25 (36)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Levels of cerebrospinal fluid α-synuclein oligomers are increased in Parkinson’s disease with dementia and dementia with Lewy bodies compared to Alzheimer’s disease 
The objective was to study whether α-synuclein oligomers are altered in the cerebrospinal fluid (CSF) of patients with dementia, including Parkinson disease with dementia (PDD), dementia with Lewy bodies (DLB), and Alzheimer disease (AD), compared with age-matched controls.
In total, 247 CSF samples were assessed in this study, including 71 patients with DLB, 30 patients with PDD, 48 patients with AD, and 98 healthy age-matched controls. Both total and oligomeric α-synuclein levels were evaluated by using well-established immunoassays.
The levels of α-synuclein oligomers in the CSF were increased in patients with PDD compared with the controls (P < 0.05), but not in patients with DLB compared with controls. Interestingly, the levels of α-synuclein oligomers in the CSF were also significantly higher in patients with PDD (P < 0.01) and DLB (P < 0.05) compared with patients with AD. The levels of CSF α-synuclein oligomers and the ratio of oligomeric/total-α-synuclein could distinguish DLB or PDD patients from AD patients, with areas under the curves (AUCs) of 0.64 and 0.75, respectively. In addition, total-α-synuclein alone could distinguish DLB or PDD patients from AD patients, with an AUC of 0.80.
The levels of α-synuclein oligomers were increased in the CSF from α-synucleinopathy patients with dementia compared with AD cases.
PMCID: PMC4075410  PMID: 24987465
2.  Kynurenic Acid Levels in Cerebrospinal Fluid from Patients with Alzheimer’s Disease or Dementia with Lewy Bodies 
Kynurenic acid (KYNA) is implicated in cognitive functions. Altered concentrations of the compound are found in serum and cerebrospinal fluid (CSF) of patients with Alzheimer’s disease (AD). Further studies to determine whether KYNA serves as a biomarker for cognitive decline and dementia progression are required. In this study, we measured CSF KYNA levels in AD patients (n = 19), patients with dementia with Lewy bodies (DLB) (n = 18), and healthy age-matched controls (Ctrls)) (n = 20) to further explore possible correlations between KYNA levels, cognitive decline, and well-established AD and inflammatory markers. Neither DLB patients nor AD patients showed significantly altered CSF KYNA levels compared to Ctrls. However, female AD patients displayed significantly higher KYNA levels compared to male AD patients, a gender difference not seen in the Ctrl or DLB group. Levels of KYNA significantly correlated with the AD-biomarker P-tau and the inflammation marker soluble intercellular adhesion molecule-1 (sICAM-1) in the AD patient group. No associations between KYNA and cognitive functions were found. Our study shows that, although KYNA was not associated with cognitive decline in AD or DLB patients, it may be implicated in AD-related hyperphosphorylation of tau and inflammation. Further studies on larger patient cohorts are required to understand the potential role of KYNA in AD and DLB.
PMCID: PMC4011721  PMID: 24855376
Alzheimer’s disease; astrocyte markers; cognition; dementia with Lewy bodies; kynurenic acid; inflammation
3.  Changes in cerebrospinal fluid and blood plasma levels of IGF-II and its binding proteins in Alzheimer’s disease: an observational study 
BMC Neurology  2014;14:64.
The Insulin-like Growth Factor (IGF)-related system is implicated in neuroregeneration and cell repair, as well as regulating lifespan. IGF-II, one component of this system, has also been found to affect memory functions in a rat model. In this study we explored changes in the IGF-related system in patients with Alzheimer’s disease (AD), including changes in IGF-II levels.
We measured blood plasma and cerebrospinal fluid (CSF) levels of IGF-I, IGF-II, IGFBP-2 and IGFBP-3 in 72 healthy controls and 92 patients with AD.
We found significantly lower blood plasma levels of IGF-II and IGFBP-3 in patients with AD, compared with controls. The levels of IGF-II and IGFBP-2 were significantly elevated in the CSF from patients with AD. We also found correlations between established CSF biomarkers for AD (tau and P-tau) and components of the IGF system.
CSF and blood plasma levels of IGF-II and some of its binding proteins are changed in patients with AD. Further investigation into this area may unravel important clues to the nature of this disease.
PMCID: PMC3973836  PMID: 24685003
Alzheimer Disease; Dementia; Cerebrospinal fluid; Blood plasma; IGF-I; IGF-II; IGFBP-2; IGFBP-3; Insulin
4.  Progression of mild Alzheimer’s disease: knowledge and prediction models required for future treatment strategies 
Knowledge of longitudinal progression in mild Alzheimer’s disease (AD) is required for the evaluation of disease-modifying therapies. Our aim was to observe the effects of long-term cholinesterase inhibitor (ChEI) therapy in mild AD patients in a routine clinical setting.
This was a prospective, open-label, non-randomized, multicenter study of ChEI treatment (donepezil, rivastigmine or galantamine) conducted during clinical practice. The 734 mild AD patients (Mini-Mental State Examination (MMSE) score 20 to 26) were assessed at baseline and then semi-annually over three years. Outcome measures included the MMSE, Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-cog), Clinician’s Interview-Based Impression of Change (CIBIC) and Instrumental Activities of Daily Living (IADL) scale.
After three years of ChEI therapy, 31% (MMSE) and 33% (ADAS-cog) of the patients showed improved/unchanged cognitive ability, 33% showed improved/unchanged global performance and 14% showed improved/unchanged IADL capacity. Higher mean dose of ChEI and lower educational level were both predictors of more positive longitudinal cognitive and functional outcomes. Older participants and those with a better IADL score at baseline exhibited a slower rate of cognitive decline, whereas younger participants and those with higher cognitive status showed more preserved IADL ability over time. Gender and apolipoprotein E (APOE) genotype showed inconsistent results. Prediction models using the abovementioned scales are presented.
In naturalistic mild AD patients, a marked deterioration in IADL compared with cognitive and global long-term outcomes was observed, indicating the importance of functional assessments during the early stages of the disease. The participants’ time on ChEI treatment before inclusion in studies of new therapies might affect their rate of decline and thus the comparisons of changes in scores between various studies. An increased understanding of expected disease progression in different domains and potential predictors of disease progression is essential for assessment of future therapies in AD.
PMCID: PMC3978889  PMID: 24099236
6.  Multidisciplinary intervention reducing readmissions in medical inpatients: a prospective, non-randomized study 
The purpose of this study was to examine whether a multidisciplinary intervention targeting drug-related problems, cognitive impairment, and discharge miscommunication could reduce readmissions in a general hospital population.
This prospective, non-randomized intervention study was carried out at the department of general internal medicine at a tertiary university hospital. Two hundred medical inpatients living in the community and aged over 60 years were included. Ninety-nine patients received interventions and 101 received standard care. Control/intervention allocation was determined by geographic selection. Interventions consisted of a comprehensive medication review, improved discharge planning, post-discharge telephone follow-up, and liaison with the patient’s general practitioner. The main outcome measures recorded were readmissions and hospital nights 12 months after discharge. Separate analyses were made for 12-month survivors and from an intention-to-treat perspective. Comparative analyses were made between groups as well as within groups over time.
After 12 months, survivors in the control group had 125 readmissions in total, compared with 58 in the intervention group (Mann–Whitney U test, P = 0.02). For hospital nights, the numbers were 1,228 and 492, respectively (P = 0.009). Yearly admissions had increased from the previous year in the control group from 77 to 125 (Wilcoxon signed-rank test, P = 0.002) and decreased from 75 to 58 in the intervention group (P = 0.25). From the intention-to-treat perspective, the same general pattern was observed but was not significant (1,827 versus 1,008 hospital nights, Mann–Whitney test, P = 0.054).
A multidisciplinary approach, targeting several different areas, could substantially lower readmissions and hospital costs in a non-terminal general hospital population.
PMCID: PMC3791960  PMID: 24106422
medical inpatients; hospital readmissions; intervention; drug-related problems; cognitive impairment; hospital discharge
7.  Evaluating Amyloid-β Oligomers in Cerebrospinal Fluid as a Biomarker for Alzheimer’s Disease 
PLoS ONE  2013;8(6):e66381.
The current study evaluated amyloid-β oligomers (Aβo) in cerebrospinal fluid as a clinical biomarker for Alzheimer’s disease (AD). We developed a highly sensitive Aβo ELISA using the same N-terminal monoclonal antibody (82E1) for capture and detection. CSF samples from patients with AD, mild cognitive impairment (MCI), and healthy controls were examined. The assay was specific for oligomerized Aβ with a lower limit of quantification of 200 fg/ml, and the assay signal showed a tight correlation with synthetic Aβo levels. Three clinical materials of well characterized AD patients (n = 199) and cognitively healthy controls (n = 148) from different clinical centers were included, together with a clinical material of patients with MCI (n = 165). Aβo levels were elevated in the all three AD-control comparisons although with a large overlap and a separation from controls that was far from complete. Patients with MCI who later converted to AD had increased Aβo levels on a group level but several samples had undetectable levels. These results indicate that presence of high or measurable Aβo levels in CSF is clearly associated with AD, but the overlap is too large for the test to have any diagnostic potential on its own.
PMCID: PMC3682966  PMID: 23799095
8.  NG2 cells, a new trail for Alzheimer’s disease mechanisms? 
Neuron Glial 2 (NG2) cells are glial cells known to serve as oligodendrocyte progenitors as well as modulators of the neuronal network. Altered NG2 cell morphology and up-regulation as well as increased shedding of the proteoglycan NG2 expressed on the cell surface have been described in rodent models of brain injury. Here we describe alterations in the human NG2 cell population in response to pathological changes characteristic of Alzheimer’s disease (AD).
Immunohistological stainings of postmortem brain specimens from clinically diagnosed and postmortem verified AD patients and non-demented controls revealed reduced NG2 immunoreactivity as well as large numbers of NG2 positive astrocytes in individuals with high amyloid beta plaque load. Since fibrillar amyloid beta (Aβ)1-42 is the major component of AD-related senile plaques, we exposed human NG2 cells to oligomer- and fibril enriched preparations of Aβ1-42. We found that both oligomeric and fibrillar Aβ1-42 induced changes in NG2 cell morphology. Further, in vitro exposure to fibrillar Aβ1-42 decreased the NG2 concentrations in both cell lysates and supernatants. Interestingly, we also found significantly decreased levels of soluble NG2 in the cerebrospinal fluid (CSF) from clinically diagnosed AD patients compared to non-demented individuals. Additionally, the CSF NG2 levels were found to significantly correlate with the core AD biomarkers Aß1-42, T-tau and P-tau.
Our results demonstrate major alterations in the NG2 cell population in relation to AD pathology which highlights the NG2 cell population as a new attractive research target in the search for cellular mechanisms associated with AD pathogenesis.
Electronic supplementary material
The online version of this article (doi:10.1186/2051-5960-1-7) contains supplementary material, which is available to authorized users.
PMCID: PMC4046664  PMID: 24252600
NG2 cells; Alzheimer’s disease; Amyloid beta; Cerebrospinal fluid; Brain tissue; Cell culture
9.  Tau Pathology and Parietal White Matter Lesions Have Independent but Synergistic Effects on Early Development of Alzheimer's Disease 
White matter lesions (WMLs) are a common finding in patients with dementia. This study investigates the relationship between WMLs, hyperphosphorylated tau (P-tau) in cerebrospinal fluid (CSF) and apolipoprotein E (APOE) ε4 genotype in prodromal Alzheimer's disease (AD).
Baseline levels of tau, P-tau and β-amyloid 1-42 in CSF, the presence of WMLs in the brain, and the APOE genotype were ascertained in 159 patients with mild cognitive impairment (MCI) and 38 cognitively healthy controls.
After 5.7 years, 58 patients had developed AD. In this group, patients with normal levels of CSF P-tau had higher levels of WMLs in the parietal regions than those with pathological P-tau levels (p < 0.05). Also, patients without APOE ε4 alleles had more WMLs in the parietal lobes than those with at least one allele (p < 0.05). MCI patients with pathological P-tau levels and parietal WMLs showed a greater risk of developing AD than those with just one of the two pathological parameters.
We suggest that WMLs in parietal lobes and tau pathology likely have independent but synergistic effects on the reduction of the cognitive reserve capacity of the brain. In patients with a more low-grade AD pathology, WMLs in the parietal lobes might increase the risk of developing dementia.
PMCID: PMC3656673  PMID: 23687506
Alzheimer's disease; Dementia; Cerebrospinal fluid; White matter lesions; Follow-up studies

10.  Injury markers predict time to dementia in subjects with MCI and amyloid pathology 
Neurology  2012;79(17):1809-1816.
Alzheimer disease (AD) can now be diagnosed in subjects with mild cognitive impairment (MCI) using biomarkers. However, little is known about the rate of decline in those subjects. In this cohort study, we aimed to assess the conversion rate to dementia and identify prognostic markers in subjects with MCI and evidence of amyloid pathology.
We pooled subjects from the VU University Medical Center Alzheimer Center and the Development of Screening Guidelines and Criteria for Predementia Alzheimer's Disease (DESCRIPA) study. We included subjects with MCI, an abnormal level of β-amyloid1−42 (Aβ1–42) in the CSF, and at least one diagnostic follow-up visit. We assessed the effect of APOE genotype, CSF total tau (t-tau) and tau phosphorylated at threonine 181 (p-tau) and hippocampal volume on time to AD-type dementia using Cox proportional hazards models and on decline on the Mini-Mental State Examination (MMSE) using linear mixed models.
We included 110 subjects with MCI with abnormal CSF Aβ1–42 and a mean MMSE score of 26.3 ± 2.8. During a mean follow-up of 2.2 ± 1.0 (range 0.4–5.0) years, 63 subjects (57%) progressed to AD-type dementia. Abnormal CSF t-tau (hazard ratio [HR] 2.3, 95% confidence interval [CI] 1.1–4.6, p = 0.03) and CSF p-tau (HR 3.5, 95% CI 1.3–9.2, p = 0.01) concentration and hippocampal atrophy (HR 2.5, 95% CI 1.1–5.6, p = 0.02) predicted time to dementia. For subjects with both abnormal t-tau concentration and hippocampal atrophy, HR was 7.3 (95% CI 1.0–55.9, p = 0.06). Furthermore, abnormal CSF t-tau and p-tau concentrations and hippocampal atrophy predicted decline in MMSE score.
In subjects with MCI and evidence of amyloid pathology, the injury markers CSF t-tau and p-tau and hippocampal atrophy can predict further cognitive decline.
PMCID: PMC3475623  PMID: 23019259
11.  A longitudinal study of risk factors for community-based home help services in Alzheimer’s disease: the influence of cholinesterase inhibitor therapy 
To investigate the long-term effects of cholinesterase inhibitor (ChEI) therapy and the influence of sociodemographic and clinical factors on the use of community-based home help services (HHS) by patients with Alzheimer’s disease (AD).
This 3-year, prospective, multicenter study included 880 AD patients treated with donepezil, rivastigmine, or galantamine in a routine clinical setting. At baseline and every 6 months, the patients were assessed with several rating scales, including the Mini-Mental State Examination, Instrumental Activities of Daily Living (IADL), and Physical Self-Maintenance Scale. Doses of ChEI and amounts of HHS per week were recorded. Cox regression models were used to predict the time to HHS, and multiple linear regression was used to predict the volume of HHS used.
During the study, 332 patients (38%) used HHS. Factors that both postponed HHS use and predicted lower amounts of HHS were higher doses of ChEIs, better IADL ability, and living with family. Men, younger individuals, and those with a slower IADL decline showed a longer time to HHS, whereas female sex, a lower cognitive status, or more medications at baseline predicted fewer hours of HHS.
Higher doses of ChEI might reduce the use of HHS, possibly reducing the costs of community-based care. Female spouses provide more informal care than do male spouses, so the likelihood of using HHS is greater among women with AD. The “silent group” of more cognitively impaired and frail elderly AD patients receives less HHS, which might precipitate institutionalization.
PMCID: PMC3610439  PMID: 23682212
cognition; activities of daily living; treatment effect; gender; predictors
12.  Low CSF Levels of Both α-Synuclein and the α-Synuclein Cleaving Enzyme Neurosin in Patients with Synucleinopathy 
PLoS ONE  2013;8(1):e53250.
Neurosin is a protease that in vitro degrades α-synuclein, the main constituent of Lewy bodies found in brains of patients with synucleinopathy including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Several studies have reported reduced cerebrospinal fluid (CSF) levels of α-synuclein in synucleinopathy patients and recent data also proposes a significant role of α-synuclein in the pathophysiology of Alzheimer's disease (AD). To investigate potential links between neurosin and its substrate α-synuclein in vivo we used a commercially available sandwich ELISA and an in-house developed direct ELISA to quantify CSF levels of α-synuclein and neurosin in patients diagnosed with DLB, PD and PD dementia (PDD) versus AD patients and non-demented controls. We found that patients with synucleinopathy displayed lower CSF levels of neurosin and α-synuclein compared to controls and AD patients. In contrast, AD patients demonstrated significantly increased CSF α-synuclein but similar neurosin levels compared to non-demented controls. Further, CSF neurosin and α-synuclein concentrations were positively associated in controls, PD and PDD patients and both proteins were highly correlated to CSF levels of phosphorylated tau in all investigated groups. We observed no effect of gender or presence of the apolipoprotein Eε4 allele on neither neurosin or α-synuclein CSF levels. In concordance with the current literature our study demonstrates decreased CSF levels of α-synuclein in synucleinopathy patients versus AD patients and controls. Importantly, decreased α-synuclein levels in patients with synucleinopathy appear linked to low levels of the α-synuclein cleaving enzyme neurosin. In contrast, elevated levels of α-synuclein in AD patients were not related to any altered CSF neurosin levels. Thus, altered CSF levels of α-synuclein and neurosin in patients with synucleinopathy versus AD may not only mirror disease-specific neuropathological mechanisms but may also serve as fit candidates for future biomarker studies aiming at identifying specific markers of synucleinopathy.
PMCID: PMC3540093  PMID: 23308173
13.  A Longitudinal Study of Physical Function in Patients with Early-Onset Dementia 
The aim of this study was to explore changes in mobility in terms of ambulation and transfer over 1 year in patients with early-onset Alzheimer's disease (EOAD), and to compare mobility in EOAD with patients with other types of early-onset dementia (EOOD).
Forty-two patients with EOAD and 30 patients with EOOD were included. All patients were home-dwelling and had mild or moderate degree of dementia. Mobility was assessed using the Timed Up and Go Test (TUG), a modified version of the Clinical Outcome Variables Scale, timed stair walking, and timed rise from the floor.
The EOAD group performed significantly better than the EOOD group on all mobility tests. After 1 year, 25 persons with EOAD were tested again. The performance on TUG (p = 0.028) and stair walking (p = 0.02) had deteriorated at the 1-year follow-up in the EOAD group.
Patients with EOAD performed better on mobility tasks than patients with EOOD, but their performance deteriorated at 1-year follow-up.
PMCID: PMC3551435  PMID: 23341827
Dementia; Alzheimer's disease; Early onset; Mobility; Motor function; Physical performance; Timed Up and Go Test
14.  No Diagnostic Value of Plasma Clusterin in Alzheimer's Disease 
PLoS ONE  2012;7(11):e50237.
There is an urgent need for biomarkers to enable early diagnosis of Alzheimer's disease (AD). It has recently been shown that a variant within the clusterin gene is associated with increased risk of AD and plasma levels of clusterin have been found to be associated with the risk of AD. We, therefore, investigated the diagnostic value of clusterin by quantifying clusterin using an ELISA in plasma from 171 controls, 127 patients with AD, 82 patients with other dementias and 30 patients with depression. We observed similar plasma clusterin levels in controls, AD patients and patients with other dementias, suggesting that plasma clusterin levels have no diagnostic value for AD. There was a slight, but significant, increase in plasma clusterin in patients with depression compared to all other groups tested, which may warrant further investigation.
PMCID: PMC3509147  PMID: 23209684
15.  Functional response to cholinesterase inhibitor therapy in a naturalistic Alzheimer’s disease cohort 
BMC Neurology  2012;12:134.
Activities of daily living (ADL) are an essential part of the diagnostic criteria for Alzheimer’s disease (AD). A decline in ADL affects independent living and has a strong negative impact on caregiver burden. Functional response to cholinesterase inhibitor (ChEI) treatment and factors that might influence this response in naturalistic AD patients need investigating. The aim of this study was to identify the socio-demographic and clinical factors that affect the functional response after 6 months of ChEI therapy.
This prospective, non-randomised, multicentre study in a routine clinical setting included 784 AD patients treated with donepezil, rivastigmine or galantamine. At baseline and after 6 months of treatment, patients were assessed using several rating scales, including the Instrumental Activities of Daily Living (IADL) scale, Physical Self-Maintenance Scale (PSMS) and Mini-Mental State Examination (MMSE). Demographic and clinical characteristics were investigated at baseline. The functional response and the relationships of potential predictors were analysed using general linear models.
After 6 months of ChEI treatment, 49% and 74% of patients showed improvement/no change in IADL and in PSMS score, respectively. The improved/unchanged patients exhibited better cognitive status at baseline; regarding improved/unchanged PSMS, patients were younger and used fewer anti-depressants. A more positive functional response to ChEI was observed in younger individuals or among those having the interaction effect of better preserved cognition and lower ADL ability. Patients with fewer concomitant medications or those using NSAIDs/acetylsalicylic acid showed a better PSMS response.
Critical characteristics that may influence the functional response to ChEI in AD were identified. Some predictors differed from those previously shown to affect cognitive response, e.g., lower cognitive ability and older age predicted better cognitive but worse functional response.
PMCID: PMC3534216  PMID: 23126532
Alzheimer’s disease; Activities of daily living; Cholinesterase inhibitors; Treatment effect; Predictors; Statistical models
16.  The Impact of Autonomic Dysfunction on Survival in Patients with Dementia with Lewy Bodies and Parkinson's Disease with Dementia 
PLoS ONE  2012;7(10):e45451.
Autonomic dysfunction is a well-known feature in neurodegenerative dementias, especially common in α-synucleinopathies like dementia with Lewy bodies and Parkinson's disease with dementia. The most common symptoms are orthostatic hypotension, incontinence and constipation, but its relevance in clinical practice is poorly understood. There are no earlier studies addressing the influence of autonomic dysfunction on clinical course and survival. The aim of this study was to investigate the frequency of the three most common features of autonomic dysfunction and analyze how it affects survival.
Thirty patients with dementia with Lewy bodies and Parkinson's disease with dementia were included in this prospective, longitudinal follow-up study. Presence of incontinence and constipation was recorded at baseline. Blood pressure was measured at baseline, after 3 months and after 6 months according to standardized procedures, with 5 measurements during 10 minutes after rising. Orthostatic hypotension was defined using consensus definitions and persistent orthostatic hypotension was defined as 5 or more measurements with orthostatic hypotension. Difference in survival was analyzed 36 months after baseline.
There was a high frequency of persistent orthostatic blood pressure (50%), constipation (30%) and incontinence (30%). Patients with persistent orthostatic hypotension had a significantly shorter survival compared to those with no or non-persistent orthostatic hypotension (Log rank x2 = 4.47, p = 0.034). Patients with constipation and/or urinary incontinence, in addition to persistent orthostatic hypotension, had a poorer prognosis compared to those with isolated persistent orthostatic hypotension or no orthostatic hypotension (Log rank x2 = 6.370, p = 0.041).
According to our findings, the identification of autonomic dysfunction seems to be of great importance in clinical practice, not only to avoid falls and other complications, but also as a possible predictor of survival.
PMCID: PMC3462171  PMID: 23049679
17.  Cognitive impairment is undetected in medical inpatients: a study of mortality and recognition amongst healthcare professionals 
BMC Geriatrics  2012;12:47.
Detecting cognitive impairment in medical inpatients is important due to its association with adverse outcomes. Our aim was to study recognition of cognitive impairment and its association with mortality.
200 inpatients aged over 60 years were recruited at the Department of General Internal Medicine at University Hospital MAS in Malmö, Sweden. The MMSE (Mini-Mental State Examination) and the CDT (Clock-Drawing Test) were performed and related to recognition rates by patients, staff physicians, nurses and informants. The impact of abnormal cognitive test results on mortality was studied using a multivariable Cox proportional hazards regression.
55 patients (28%) had no cognitive impairment while 68 patients (34%) had 1 abnormal test result (on MMSE or CDT) and 77 patients (39%) had 2 abnormal test results. Recognition by healthcare professionals was 12% in the group with 1 abnormal test and 44-64% in the group with 2 abnormal test results. In our model, cognitive impairment predicted 12-month mortality with a hazard ratio (95% CI) of 2.86 (1.28-6.39) for the group with 1 abnormal cognitive test and 3.39 (1.54-7.45) for the group with 2 abnormal test results.
Cognitive impairment is frequent in medical inpatients and associated with increased mortality. Recognition rates of cognitive impairment need to be improved in hospitals.
PMCID: PMC3492162  PMID: 22920412
Cognitive impairment; Medical inpatients; Mortality
18.  Comparison of Brief Cognitive Tests and CSF Biomarkers in Predicting Alzheimer’s Disease in Mild Cognitive Impairment: Six-Year Follow-Up Study 
PLoS ONE  2012;7(6):e38639.
Early identification of Alzheimer’s disease (AD) is needed both for clinical trials and in clinical practice. In this study, we compared brief cognitive tests and cerebrospinal fluid (CSF) biomarkers in predicting conversion from mild cognitive impairment (MCI) to AD.
At a memory clinic, 133 patients with MCI were followed until development of dementia or until they had been stable over a mean period of 5.9 years (range 3.2–8.8 years). The Mini-Mental State Examination (MMSE), the clock drawing test, total tau, tau phosphorylated at Thr181 (P-tau) and amyloid-β1–42 (Aβ42) were assessed at baseline.
During clinical follow-up, 47% remained cognitively stable and 53% developed dementia, with an incidence of 13.8%/year. In the group that developed dementia the prevalence of AD was 73.2%, vascular dementia 14.1%, dementia with Lewy bodies (DLB) 5.6%, progressive supranuclear palsy (PSP) 4.2%, semantic dementia 1.4% and dementia due to brain tumour 1.4%. When predicting subsequent development of AD among patients with MCI, the cognitive tests classified 81% of the cases correctly (AUC, 0.85; 95% CI, 0.77–0.90) and CSF biomarkers 83% (AUC, 0.89; 95% CI, 0.82–0.94). The combination of cognitive tests and CSF (AUC, 0.93; 95% CI 0.87 to 0.96) was significantly better than the cognitive tests (p = 0.01) and the CSF biomarkers (p = 0.04) alone when predicting AD.
The MMSE and the clock drawing test were as accurate as CSF biomarkers in predicting future development of AD in patients with MCI. Combining both instruments provided significantly greater accuracy than cognitive tests or CSF biomarkers alone in predicting AD.
PMCID: PMC3382225  PMID: 22761691
19.  CCL2 Is Associated with a Faster Rate of Cognitive Decline during Early Stages of Alzheimer's Disease 
PLoS ONE  2012;7(1):e30525.
Chemokine (C-C motif) receptor 2 (CCR2)-signaling can mediate accumulation of microglia at sites affected by neuroinflammation. CCR2 and its main ligand CCL2 (MCP-1) might also be involved in the altered metabolism of beta-amyloid (Aβ) underlying Alzheimer's disease (AD). We therefore measured the levels of CCL2 and three other CCR2 ligands, i.e. CCL11 (eotaxin), CCL13 (MCP-4) and CCL26 (eotaxin-3), in the cerebrospinal fluid (CSF) and plasma of 30 controls and 119 patients with mild cognitive impairment (MCI) at baseline. During clinical follow-up 52 MCI patients were clinically stable for five years, 47 developed AD (i.e. cases with prodromal AD at baseline) and 20 developed other dementias. Only CSF CCL26 was statistically significantly elevated in patients with prodromal AD when compared to controls (p = 0.002). However, in patients with prodromal AD, the CCL2 levels in CSF at baseline correlated with a faster cognitive decline during follow-up (rs = 0.42, p = 0.004). Furthermore, prodromal AD patients in the highest tertile of CSF CCL2 exhibited a significantly faster cognitive decline (p<0.001) and developed AD dementia within a shorter time period (p<0.003) compared to those in the lowest tertile. Finally, in the entire MCI cohort, CSF CCL2 could be combined with CSF Tau, P-tau and Aβ42 to predict both future conversion to AD and the rate of cognitive decline. If these results are corroborated in future studies, CCL2 in CSF could be a candidate biomarker for prediction of future disease progression rate in prodromal AD. Moreover, CCR2-related signaling pathways might be new therapeutic targets for therapies aiming at slowing down the disease progression rate of AD.
PMCID: PMC3268759  PMID: 22303443
20.  Evaluation of a Previously Suggested Plasma Biomarker Panel to Identify Alzheimer's Disease 
PLoS ONE  2012;7(1):e29868.
There is an urgent need for biomarkers in plasma to identify Alzheimer's disease (AD). It has previously been shown that a signature of 18 plasma proteins can identify AD during pre-dementia and dementia stages (Ray et al, Nature Medicine, 2007). We quantified the same 18 proteins in plasma from 174 controls, 142 patients with AD, and 88 patients with other dementias. Only three of these proteins (EGF, PDG-BB and MIP-1δ) differed significantly in plasma between controls and AD. The 18 proteins could classify patients with AD from controls with low diagnostic precision (area under the ROC curve was 63%). Moreover, they could not distinguish AD from other dementias. In conclusion, independent validation of results is important in explorative biomarker studies.
PMCID: PMC3261152  PMID: 22279551
21.  Galantamine treatment in Alzheimer’s disease: response and long-term outcome in a routine clinical setting 
In the absence of long-term, placebo-controlled studies of cholinesterase inhibitors in Alzheimer’s disease (AD), analysis of the results of open-label trials becomes crucial. This study aimed to explore the three-year effects of galantamine treatment, as well as subgroups of response and adherence to treatment.
Two hundred and eighty patients with a clinical diagnosis of AD were included in the prospective, open-label, multicenter Swedish Alzheimer Treatment Study, and received galantamine treatment. Efficacy measures included cognitive tests, ie, the Mini-Mental State Examination (MMSE) and Alzheimer’s Disease Assessment Scale Cognitive Subscale (ADAS-cog), functional rating (Instrumental Activities of Daily Living Scale [IADL]), and global rating. Assessments were carried out before treatment and every six months for a period of three years. K-means cluster analysis was used to identify response subgroups.
After three years of treatment, the mean change from baseline was 2.6 points in MMSE and 5.6 points in ADAS-cog scores. Globally, half of the patients improved or remained unchanged for two years. Cluster analysis identified two response clusters. Cluster 1 included patients with low ability in ADAS-cog and IADL scores at baseline. Even though the patients in cluster 1 were older and less educated, they responded better at six months compared with patients in cluster 2. Cluster 2 included patients with better ADAS-cog and IADL scores at baseline. Patients in cluster 2 had a higher frequency of the APOE ɛ4 allele, a slower pretreatment progression rate, and remained in the study longer than those in cluster 1. Three-year completers (n = 129, 46%) received higher doses of galantamine compared with dropouts.
AD patients who received long-term galantamine treatment were cognitively and globally stabilized. Subgroup response analysis identified a better short-term response in older patients with lower cognitive and functional abilities at baseline, a faster pretreatment progression rate, and a lower incidence of the APOE ɛ4 allele. The galantamine dose was higher in the population of completers.
PMCID: PMC3191869  PMID: 22003296
Alzheimer’s disease; long-term treatment; routine setting; cholinesterase inhibitor; galantamine; k-means cluster analysis; completion rates
22.  Cerebrospinal Fluid Levels of sAPPα and sAPPβ in Lewy Body and Alzheimer's Disease: Clinical and Neurochemical Correlates 
We measured cerebrospinal fluid (CSF) levels of the soluble isoforms of amyloid precursor protein (APP; sAPPα sAPPβ) and other CSF biomarkers in 107 patients with Alzheimer's disease (AD), dementia with Lewy body dementia (DLB), Parkinson's disease dementia (PDD), and normal controls (NC) using commercial kits. DLB and PDD were combined in a Lewy body dementia group (LBD). No differences were observed in sAPPα and sAPPβ levels between the groups. Significant correlations were observed between sAPPα and sAPPβ and between sAPPβ and Mini-Mental State Examination scores in the total group analysis as well as when LBD and AD groups were analyzed separately. sAPPα and sAPPβ levels correlated with Aβ38, Aβ40, Aβ42, and Tau in the LBD group. In AD, sAPPα correlated with p-Tau and sAPPβ with Aβ40. The differential association between sAPPα and sAPPβ with Aβ and Tau species between LBD and AD groups suggests a possible relationship with the underlying pathologies in LBD and AD.
PMCID: PMC3182340  PMID: 21966597
23.  Predictors of long-term cognitive outcome in Alzheimer's disease 
The objective of this study was to describe the longitudinal cognitive outcome in Alzheimer's disease (AD) and analyze factors that affect the outcome, including the impact of different cholinesterase inhibitors (ChEI).
In an open, three-year, nonrandomized, prospective, multicenter study, 843 patients were treated with donepezil, rivastigmine, or galantamine in a routine clinical setting. At baseline and every six months, patients were assessed using several rating scales, including the Mini-Mental State Examination (MMSE) and the Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog) and the dose of ChEI was recorded. Sociodemographic and clinical characteristics were investigated. The relationships of these predictors with longitudinal cognitive ability were analyzed using mixed-effects models.
Slower long-term cognitive decline was associated with a higher cognitive ability at baseline or a lower level of education. The improvement in cognitive response after six months of ChEI therapy and a more positive longitudinal outcome were related to a higher mean dose of ChEI, nonsteroidal anti-inflammatory drug (NSAID)/acetylsalicylic acid usage, male gender, older age, and absence of the apolipoprotein E (APOE) ε4 allele. More severe cognitive impairment at baseline also predicted an improved response to ChEI treatment after six months. The type of ChEI agent did not influence the short-term response or the long-term outcome.
In this three-year AD study performed in a routine clinical practice, the response to ChEI treatment and longitudinal cognitive outcome were better in males, older individuals, non-carriers of the APOE ε4 allele, patients treated with NSAIDs/acetylsalicylic acid, and those receiving a higher dose of ChEI, regardless of the drug agent.
PMCID: PMC3226278  PMID: 21774798
24.  Aβ40 Oligomers Identified as a Potential Biomarker for the Diagnosis of Alzheimer's Disease 
PLoS ONE  2010;5(12):e15725.
Alzheimer's Disease (AD) is the most prevalent form of dementia worldwide, yet the development of therapeutics has been hampered by the absence of suitable biomarkers to diagnose the disease in its early stages prior to the formation of amyloid plaques and the occurrence of irreversible neuronal damage. Since oligomeric Aβ species have been implicated in the pathophysiology of AD, we reasoned that they may correlate with the onset of disease. As such, we have developed a novel misfolded protein assay for the detection of soluble oligomers composed of Aβ x-40 and x-42 peptide (hereafter Aβ40 and Aβ42) from cerebrospinal fluid (CSF). Preliminary validation of this assay with 36 clinical samples demonstrated the presence of aggregated Aβ40 in the CSF of AD patients. Together with measurements of total Aβ42, diagnostic sensitivity and specificity greater than 95% and 90%, respectively, were achieved. Although larger sample populations will be needed to confirm this diagnostic sensitivity, our studies demonstrate a sensitive method of detecting circulating Aβ40 oligomers from AD CSF and suggest that these oligomers could be a powerful new biomarker for the early detection of AD.
PMCID: PMC3012719  PMID: 21209907
25.  Diagnosis-Independent Alzheimer Disease Biomarker Signature in Cognitively Normal Elderly People 
Archives of neurology  2010;67(8):949-956.
To identify biomarker patterns typical for Alzheimer disease (AD) in an independent, unsupervised way, without using information on the clinical diagnosis.
Mixture modeling approach.
Alzheimer’s Disease Neuroimaging Initiative database.
Patients or Other Participants
Cognitively normal persons, patients with AD, and individuals with mild cognitive impairment.
Main Outcome Measures
Cerebrospinal fluid–derived β-amyloid protein 1–42, total tau protein, and phosphorylated tau181P protein concentrations were used as biomarkers on a clinically well-characterized data set. The outcome of the qualification analysis was validated on 2 additional data sets, 1 of which was autopsy confirmed.
Using the US Alzheimer’s Disease Neuroimaging Initiative data set, a cerebrospinal fluid β-amyloid protein 1–42/phosphorylated tau181P biomarker mixture model identified 1 feature linked to AD, while the other matched the “healthy” status. The AD signature was found in 90%, 72%, and 36% of patients in the AD, mild cognitive impairment, and cognitively normal groups, respectively. The cognitively normal group with the AD signature was enriched in apolipoprotein E ε4 allele carriers. Results were validated on 2 other data sets. In 1 study consisting of 68 autopsy-confirmed AD cases, 64 of 68 patients (94% sensitivity) were correctly classified with the AD feature. In another data set with patients (n = 57) with mild cognitive impairment followed up for 5 years, the model showed a sensitivity of 100% in patients progressing to AD.
The mixture modeling approach, totally independent of clinical AD diagnosis, correctly classified patients with AD. The unexpected presence of the AD signature in more than one-third of cognitively normal subjects suggests that AD pathology is active and detectable earlier than has heretofore been envisioned.
PMCID: PMC2963067  PMID: 20697045

Results 1-25 (36)