PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Multi-modal MRI of mild traumatic brain injury 
NeuroImage : Clinical  2014;7:87-97.
Multi-modal magnetic resonance imaging (MRI) that included high resolution structural imaging, diffusion tensor imaging (DTI), magnetization transfer ratio (MTR) imaging, and magnetic resonance spectroscopic imaging (MRSI) were performed in mild traumatic brain injury (mTBI) patients with negative computed tomographic scans and in an orthopedic-injured (OI) group without concomitant injury to the brain. The OI group served as a comparison group for mTBI. MRI scans were performed both in the acute phase of injury (~24 h) and at follow-up (~90 days). DTI data was analyzed using tract based spatial statistics (TBSS). Global and regional atrophies were calculated using tensor-based morphometry (TBM). MTR values were calculated using the standard method. MRSI was analyzed using LC Model. At the initial scan, the mean diffusivity (MD) was significantly higher in the mTBI cohort relative to the comparison group in several white matter (WM) regions that included internal capsule, external capsule, superior corona radiata, anterior corona radiata, posterior corona radiata, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, forceps major and forceps minor of the corpus callosum, superior longitudinal fasciculus, and corticospinal tract in the right hemisphere. TBSS analysis failed to detect significant differences in any DTI measures between the initial and follow-up scans either in the mTBI or OI group. No significant differences were found in MRSI, MTR or morphometry between the mTBI and OI cohorts either at the initial or follow-up scans with or without family wise error (FWE) correction. Our study suggests that a number of WM tracts are affected in mTBI in the acute phase of injury and that these changes disappear by 90 days. This study also suggests that none of the MRI-modalities used in this study, with the exception of DTI, is sensitive in detecting changes in the acute phase of mTBI.
doi:10.1016/j.nicl.2014.07.010
PMCID: PMC4299969  PMID: 25610770
Mild traumatic brain injury; Orthopedic injury; Magnetic resonance imaging; Diffusion tensor imaging; Magnetic resonance spectroscopic imaging; Magnetization transfer ratio; Tensor based morphometry; acr, anterior region of corona radiata; alic, anterior limb of internal capsule; cc, corpus callosum; cs, centrum semiovale; cst, corticospinal tract; ec, external capsule; ic, internal capsule; ifo, inferior fronto-occipital fasciculus; ilf, inferior longitudinal fasciculus; pcr, posterior region of corona radiata; plic, posterior limb of internal capsule; scr, superior region of corona radiata; sfo, superior fronto-occipital fasciculus; slf, superior longitudinal fasciculus; sfg, superior frontal gyrus; mfg, superior frontal gyrus; jlc, juxtapositional lobule cortex; cg, cingulate gyrus; pcg, paracingulate gyrus
2.  Clinical Trials in Head Injury 
Journal of neurotrauma  2002;19(5):503-557.
Traumatic brain injury (TBI) remains a major public health problem globally. In the United States the incidence of closed head injuries admitted to hospitals is conservatively estimated to be 200 per 100,000 population, and the incidence of penetrating head injury is estimated to be 12 per 100,000, the highest of any developed country in the world. This yields an approximate number of 500,000 new cases each year, a sizeable proportion of which demonstrate signficant long-term disabilities. Unfortunately, there is a paucity of proven therapies for this disease. For a variety of reasons, clinical trials for this condition have been difficult to design and perform. Despite promising pre-clinical data, most of the trials that have been performed in recent years have failed to demonstrate any significant improvement in outcomes. The reasons for these failures have not always been apparent and any insights gained were not always shared. It was therefore feared that we were running the risk of repeating our mistakes. Recognizing the importance of TBI, the National Institute of Neurological Disorders and Stroke (NINDS) sponsored a workshop that brought together experts from clinical, research, and pharmaceutical backgrounds. This workshop proved to be very informative and yielded many insights into previous and future TBI trials. This paper is an attempt to summarize the key points made at the workshop. It is hoped that these lessons will enhance the planning and design of future efforts in this important field of research.
doi:10.1089/089771502753754037
PMCID: PMC1462953  PMID: 12042091
clinical trials; head injury; intracranial pressure; outcome measures; traumatic brain injury; trial design; uniformed consent
3.  A Conceptual Model of the Information Requirements of Nursing Organizations 
Three related issues play a role in the identification of the information requirements of nursing organizations. These issues are the current state of computer systems in health care organizations, the lack of a well-defined data set for nursing, and the absence of models representing data and information relevant to clinical and administrative nursing practice. This paper will examine current methods of data collection, processing, and storage in clinical and administrative nursing practice for the purpose of identifying the information requirements of nursing organizations. To satisfy these information requirements, database technology can be used; however, a model for database design is needed that reflects the conceptual framework of nursing and the professional concerns of nurses. A conceptual model of the types of data necessary to produce the desired information will be presented and the relationships among data will be delineated.
PMCID: PMC2245776

Results 1-3 (3)