Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Effects of Exercise Induced Low Back Pain on Intrinsic Trunk Stiffness and Paraspinal Muscle Reflexes 
Journal of biomechanics  2012;46(4):801-805.
The purpose of this study was to 1) compare trunk neuromuscular behavior between individuals with no history of low back pain (LBP) and individuals who experience exercise-induced LBP (eiLBP) when pain free, and 2) investigate changes in trunk neuromuscular behavior with eiLBP. Seventeen young adult males participated including eight reporting recurrent, acute eiLBP and nine control participants reporting no history of LBP. Intrinsic trunk stiffness and paraspinal muscle reflex delay were determined in both groups using sudden trunk flexion position perturbations 1-2 days following exercise when the eiLBP participants were experiencing an episode of LBP (termed post-exercise) and 4-5 days following exercise when eiLBP had subsided (termed post-recovery). Post-recovery, when the eiLBP group was experiencing minimal LBP, trunk stiffness was 26% higher in the eiLBP group compared to the control group (p=0.033) and reflex delay was not different (p=0.969) between groups. Trunk stiffness did not change (p=0.826) within the eiLBP group from post-exercise to post-recovery, but decreased 22% within the control group (p=0.002). Reflex delay decreased 11% within the eiLBP group from post-exercise to post-recovery (p=0.013), and increased 15% within the control group (p=0.006). Although the neuromuscular mechanisms associated with eiLBP and chronic LBP may differ, these results suggest that previously-reported differences in trunk neuromuscular behavior between individuals with chronic LBP and healthy controls reflect a combination of inherent differences in neuromuscular behavior between these individuals as well as changes in neuromuscular behavior elicited by pain.
PMCID: PMC3568223  PMID: 23182221
low back pain; exercise; trunk stiffness; reflex
2.  Females Exhibit Shorter Paraspinal Reflex Latencies than Males in Response to Sudden Trunk Flexion Perturbations 
Females have a higher risk of experiencing low back pain or injury than males. One possible reason for this might be altered reflexes since longer paraspinal reflex latencies exist in injured patients versus healthy controls. Gender differences have been reported in paraspinal reflex latency, yet findings are inconsistent. The goal here was to investigate gender differences in paraspinal reflex latency, avoiding and accounting for potentially gender-confounding experimental factors.
Ten males and ten females underwent repeated trunk flexion perturbations. Paraspinal muscle activity and trunk kinematics were recorded to calculate reflex latency and maximum trunk flexion velocity. Two-way mixed model ANOVAs were used to determine the effects of gender on reflex latency and maximum trunk flexion velocity.
Reflex latency was 18.7% shorter in females than in males (P=0.02) when exposed to identical trunk perturbations, and did not vary by impulse (P=0.38). However, maximum trunk flexion velocity was 35.3% faster in females than males (P=0.01) when exposed to identical trunk perturbations, and increased with impulse (P<0.01). While controlling for differences in maximum trunk flexion velocity, reflex latency was 16.4% shorter in females than males (P=0.04).
The higher prevalence of low back pain and injury among females does not appear to result from slower paraspinal reflexes.
PMCID: PMC2878900  PMID: 20359800
Gender; Paraspinal; Reflex Latency; Spinal Stability Control; Trunk Perturbations; Kinematics; Low Back Pain; Low Back Injury; Female; Male

Results 1-2 (2)