Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Tinnitus and Patterns of Hearing Loss 
Tinnitus is strongly linked with the presence of damaged hearing. However, it is not known why tinnitus afflicts only some, and not all, hearing-impaired listeners. One possibility is that tinnitus patients have specific inner ear damage that triggers tinnitus. In this study, differences in cochlear function inferred from psychophysical measures were measured between hearing-impaired listeners with tinnitus and hearing-impaired listeners without tinnitus. Despite having similar average hearing loss, tinnitus patients were observed to have better frequency selectivity and compression than those without tinnitus. The results suggest that the presence of subjective tinnitus may not be strongly associated to outer hair cell impairment, at least where hearing impairment is evident. The results also show a different average pattern of hearing impairment amongst the tinnitus patients, consistent with the suggestion that inner hair cell dysfunction with subsequent reduced auditory innervation is a possible trigger of tinnitus.
PMCID: PMC3660910  PMID: 23328862
tinnitus; hearing loss; psychoacoustics; absolute thresholds; frequency selectivity; compression
2.  The role of auditory nerve innervation and dendritic filtering in shaping onset responses in the ventral cochlear nucleus 
Brain Research  2009;1247(C):221-234.
Neurons in the ventral cochlear nucleus (VCN) that respond primarily at the onset of a pure tone stimulus show diversity in terms of peri-stimulus-time-histograms (PSTHs), rate-level functions, frequency tuning, and also their responses to broad band noise. A number of different mechanisms have been proposed as contributing to the onset characteristic: e.g. coincidence, depolarisation block, and low-threshold potassium currents. We show that a simple point neuron receiving convergent inputs from high-spontaneous rate auditory nerve (AN) fibers, with no special currents and no peri-stimulatory shifts in firing threshold, is sufficient to produce much of the diversity seen experimentally. Three sub-classes of onset PSTHs: onset-ideal (OI), onset-chopper (OC) and onset-locker (OL) are reproduced by variations in innervation patterns and dendritic filtering. The factors shaping responses were explored by systematically varying key parameters. An OI response in this model requires a narrow range of AN input best frequencies (BF) which only produce supra-threshold depolarizations during the stimulus onset. For OC and OL responses, receptive fields were wider. Considerable low pass filtering of AN inputs away from BF results in an OL, whilst relatively unfiltered inputs produce an OC response. Rate-level functions in response to pure tones can be sloping, or plateau. These can be also reproduced in the model by the manipulation of the AN innervation. The model supports the coincidence detection hypothesis, and suggests that differences in excitatory innervation and dendritic filtering constant are important factors to consider when accounting for the variation in response characteristics seen in VCN onset units.
PMCID: PMC2653631  PMID: 18848923
Onset; Stellate; Cochlear nucleus; Point-neuron; PSTH; Rate-level functions

Results 1-2 (2)