Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Nucleotide Sequences, Genetic Organization, and Distribution of pEU30 and pEL60 from Erwinia amylovora 
Applied and Environmental Microbiology  2004;70(12):7539-7544.
The nucleotide sequences, genetic organization, and distribution of plasmids pEU30 (30,314 bp) and pEL60 (60,145 bp) from the plant pathogen Erwinia amylovora are described. The newly characterized pEU30 and pEL60 plasmids inhabited strains isolated in the western United States and Lebanon, respectively. The gene content of pEU30 resembled plasmids found in plant-associated bacteria, while that of pEL60 was most similar to IncL/M plasmids inhabiting enteric bacteria.
PMCID: PMC535195  PMID: 15574957
2.  Erwinia amylovora CRISPR Elements Provide New Tools for Evaluating Strain Diversity and for Microbial Source Tracking 
PLoS ONE  2012;7(7):e41706.
Clustered regularly interspaced short palindromic repeats (CRISPRs) comprise a family of short DNA repeat sequences that are separated by non repetitive spacer sequences and, in combination with a suite of Cas proteins, are thought to function as an adaptive immune system against invading DNA. The number of CRISPR arrays in a bacterial chromosome is variable, and the content of each array can differ in both repeat number and in the presence or absence of specific spacers. We utilized a comparative sequence analysis of CRISPR arrays of the plant pathogen Erwinia amylovora to uncover previously unknown genetic diversity in this species. A total of 85 E. amylovora strains varying in geographic isolation (North America, Europe, New Zealand, and the Middle East), host range, plasmid content, and streptomycin sensitivity/resistance were evaluated for CRISPR array number and spacer variability. From these strains, 588 unique spacers were identified in the three CRISPR arrays present in E. amylovora, and these arrays could be categorized into 20, 17, and 2 patterns types, respectively. Analysis of the relatedness of spacer content differentiated most apple and pear strains isolated in the eastern U.S. from western U.S. strains. In addition, we identified North American strains that shared CRISPR genotypes with strains isolated on other continents. E. amylovora strains from Rubus and Indian hawthorn contained mostly unique spacers compared to apple and pear strains, while strains from loquat shared 79% of spacers with apple and pear strains. Approximately 23% of the spacers matched known sequences, with 16% targeting plasmids and 5% targeting bacteriophage. The plasmid pEU30, isolated in E. amylovora strains from the western U.S., was targeted by 55 spacers. Lastly, we used spacer patterns and content to determine that streptomycin-resistant strains of E. amylovora from Michigan were low in diversity and matched corresponding streptomycin-sensitive strains from the background population.
PMCID: PMC3409226  PMID: 22860008
3.  Relatedness of Chromosomal and Plasmid DNAs of Erwinia pyrifoliae and Erwinia amylovora 
Applied and Environmental Microbiology  2002;68(12):6182-6192.
The plant pathogen Erwinia pyrifoliae has been classified as a separate species from Erwinia amylovora based in part on differences in molecular properties. In this study, these and other molecular properties were examined for E. pyrifoliae and for additional strains of E. amylovora, including strains from brambles (Rubus spp.). The nucleotide composition of the internal transcribed spacer (ITS) region was determined for six of the seven 16S-23S rRNA operons detected in these species with a 16S rRNA gene probe. Each species contained four operons with a tRNAGlu gene and two with tRNAIle and tRNAAla genes, and analysis of the operons from five strains of E. amylovora indicated a high degree of ITS variability among them. One tRNAGlu-containing operon from E. pyrifoliae Ep1/96 was identical to one in E. amylovora Ea110, but three tRNAGlu operons and two tRNAIle and tRNAAla operons from E. pyrifoliae contained unique nucleotide changes. When groEL sequences were used for species-specific identification, E. pyrifoliae and E. amylovora were the closest phylogenetic relatives among a set of 12 bacterial species. The placement of E. pyrifoliae distinct from E. amylovora corroborated molecular hybridization data indicating low DNA-DNA similarity between them. Determination of the nucleotide sequence of plasmid pEP36 from E. pyrifoliae Ep1/96 revealed a number of presumptive genes that matched genes previously found in pEA29 from E. amylovora and similar organization for the genes and origins of replication. Also, pEP36 and pEA29 were incompatible with clones containing the reciprocal origin regions. Finally, the ColE1-like plasmid pEP2.6 from strain Ep1/96 contained sequences found in small plasmids in E. amylovora strains IL-5 and IH3-1.
PMCID: PMC134437  PMID: 12450843
4.  Complete Nucleotide Sequence of Ubiquitous Plasmid pEA29 from Erwinia amylovora Strain Ea88: Gene Organization and Intraspecies Variation 
Applied and Environmental Microbiology  2000;66(11):4897-4907.
The complete sequence of plasmid pEA29 from Erwinia amylovora strain Ea88 consists of 28,185 bp with a 50.2% G+C content. As deletions and insertions were detected in other derivatives of pEA29, its size actually varied from 27.6 to 34.9 kb. Thirteen open reading frames that encoded predicted proteins with similarities to known proteins from other bacteria were identified along with two open reading frames related to hypothetical proteins found in GenBank and six open reading frames with no similarities to existing GenBank entries. Predicted products of open reading frames with similarity to the thiamine biosynthetic genes thiO, thiG, and thiF; a betT gene coding for choline transport; an msrA gene for the enzyme methionine sulfoxide reductase; a putative methyl-accepting chemotaxis gene; an aldehyde dehydrogenase gene; an hns DNA binding gene; a LysR-type transcriptional regulator; and parA and parB partitioning genes were identified. A putative iteron-containing theta-type origin of replication with an AT-rich region and a gene for a RepA protein was identified. PstI and KpnI restriction patterns for pEA29 isolated from tree fruit strains of E. amylovora were homogenous and different from those for pEA29 isolated from Rubus (raspberry) strains. All Rubus derivatives of pEA29 contained a point mutation that eliminated a PstI site and a 1,264-bp region that replaced 1,890 bp of sequence found in pEA29 from strain Ea88. This change eliminated a second PstI site and increased the length of a KpnI fragment. An insertion sequence, ISEam1, was detected in one Rubus strain, and transposon Tn5393 was detected in three apple strains in two separate locations on the plasmid. Plasmid-cured strains exhibited reduced virulence and modified colony morphology on minimal medium without thiamine, indicating that some of the genes in pEA29 play a role in the physiology or metabolism of E. amylovora.
PMCID: PMC92397  PMID: 11055941

Results 1-4 (4)