Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Bats Track and Exploit Changes in Insect Pest Populations 
PLoS ONE  2012;7(8):e43839.
The role of bats or any generalist predator in suppressing prey populations depends on the predator's ability to track and exploit available prey. Using a qPCR fecal DNA assay, we document significant association between numbers of Brazilian free-tailed bats (Tadarida brasiliensis) consuming corn earworm (CEW) moths (Helicoverpa zea) and seasonal fluctuations in CEW populations. This result is consistent with earlier research linking the bats' diet to patterns of migration, abundance, and crop infestation by important insect pests. Here we confirm opportunistic feeding on one of the world's most destructive insects and support model estimates of the bats' ecosystem services. Regression analysis of CEW consumption versus the moth's abundance at four insect trapping sites further indicates that bats track local abundance of CEW within the regional landscape. Estimates of CEW gene copies in the feces of bats are not associated with seasonal or local patterns of CEW abundance, and results of captive feeding experiments indicate that our qPCR assay does not provide a direct measure of numbers or biomass of prey consumed. Our results support growing evidence for the role of generalist predators, and bats specifically, as agents for biological control and speak to the value of conserving indigenous generalist predators.
PMCID: PMC3432057  PMID: 22952782
2.  Population growth of Mexican free-tailed bats (Tadarida brasiliensis mexicana) predates human agricultural activity 
Human activities, such as agriculture, hunting, and habitat modification, exert a significant effect on native species. Although many species have suffered population declines, increased population fragmentation, or even extinction in connection with these human impacts, others seem to have benefitted from human modification of their habitat. Here we examine whether population growth in an insectivorous bat (Tadarida brasiliensis mexicana) can be attributed to the widespread expansion of agriculture in North America following European settlement. Colonies of T. b. mexicana are extremely large (~106 individuals) and, in the modern era, major agricultural insect pests form an important component of their food resource. It is thus hypothesized that the growth of these insectivorous bat populations was coupled to the expansion of agricultural land use in North America over the last few centuries.
We sequenced one haploid and one autosomal locus to determine the rate and time of onset of population growth in T. b. mexicana. Using an approximate Maximum Likelihood method, we have determined that T. b. mexicana populations began to grow ~220 kya from a relatively small ancestral effective population size before reaching the large effective population size observed today.
Our analyses reject the hypothesis that T. b. mexicana populations grew in connection with the expansion of human agriculture in North America, and instead suggest that this growth commenced long before the arrival of humans. As T. brasiliensis is a subtropical species, we hypothesize that the observed signals of population growth may instead reflect range expansions of ancestral bat populations from southern glacial refugia during the tail end of the Pleistocene.
PMCID: PMC3080819  PMID: 21457563
3.  Ecology of Rabies Virus Exposure in Colonies of Brazilian Free-Tailed Bats (Tadarida brasiliensis) at Natural and Man-Made Roosts in Texas 
Previous studies have investigated rabies virus (RABV) epizootiology in Brazilian free-tailed bats (Tadarida brasiliensis) in natural cave roosts. However, little is known about geographic variation in RABV exposure, or if the use of man-made roosts by this species affects enzootic RABV infection dynamics within colonies. We sampled rabies viral neutralizing antibodies in bats at three bridge and three cave roosts at multiple time points during the reproductive season to investigate temporal and roost variation in RABV exposure. We report seropositive bats in all age and sex classes with minimal geographic variation in RABV seroprevalence among Brazilian free-tailed bat colonies in south-central Texas. While roost type was not a significant predictor of RABV seroprevalence, it was significantly associated with seasonal fluctuations, suggesting patterns of exposure that differ between roosts. Temporal patterns suggest increased RABV seroprevalence after parturition in cave colonies, potentially related to an influx of susceptible young, in contrast to more uniform seroprevalence in bridge colonies. This study highlights the importance of life history and roost ecology in understanding patterns of RABV seroprevalence in colonies of the Brazilian free-tailed bat.
PMCID: PMC2944840  PMID: 19492942
Brazilian free-tailed bat; Epizootiology; Rabies virus; Roost ecology
4.  Rapid jamming avoidance in biosonar 
The sonar systems of bats and dolphins are in many ways superior to man-made sonar and radar systems, and considerable effort has been devoted to understanding the signal-processing strategies underlying these capabilities. A major feature determining the efficiency of sonar systems is the sensitivity to noise and jamming signals. Previous studies indicated that echolocating bats may adjust their signal structure to avoid jamming (‘jamming avoidance response’; JAR). However, these studies relied on behavioural correlations and not controlled experiments. Here, we provide the first experimental evidence for JAR in bats. We presented bats (Tadarida brasiliensis) with ‘playback stimuli’ consisting of recorded echolocation calls at one of six frequencies. The bats exhibited a JAR by shifting their call frequency away from the presented playback frequency. When the approaching bats were challenged by an abrupt change in the playback stimulus, they responded by shifting their call frequencies upwards, away from the playback. Interestingly, even bats initially calling below the playback's frequency shifted their frequencies upwards, ‘jumping’ over the playback frequency. These spectral shifts in the bats' calls occurred often within less than 200 ms, in the first echolocation call emitted after the stimulus switch—suggesting that rapid jamming avoidance is important for the bat.
PMCID: PMC2197216  PMID: 17254989
bat echolocation; jamming avoidance response; playback experiments; Tadarida brasiliensis

Results 1-4 (4)