PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Metabolite and transcript profiling of berry skin during fruit development elucidates differential regulation between Cabernet Sauvignon and Shiraz cultivars at branching points in the polyphenol pathway 
BMC Plant Biology  2014;14:188.
Background
Grapevine berries undergo complex biochemical changes during fruit maturation, many of which are dependent upon the variety and its environment. In order to elucidate the varietal dependent developmental regulation of primary and specialized metabolism, berry skins of Cabernet Sauvignon and Shiraz were subjected to gas chromatography–mass spectrometry (GC-MS) and liquid chromatography–mass spectrometry (LC-MS) based metabolite profiling from pre-veraison to harvest. The generated dataset was augmented with transcript profiling using RNAseq.
Results
The analysis of the metabolite data revealed similar developmental patterns of change in primary metabolites between the two cultivars. Nevertheless, towards maturity the extent of change in the major organic acid and sugars (i.e. sucrose, trehalose, malate) and precursors of aromatic and phenolic compounds such as quinate and shikimate was greater in Shiraz compared to Cabernet Sauvignon. In contrast, distinct directional projections on the PCA plot of the two cultivars samples towards maturation when using the specialized metabolite profiles were apparent, suggesting a cultivar-dependent regulation of the specialized metabolism. Generally, Shiraz displayed greater upregulation of the entire polyphenol pathway and specifically higher accumulation of piceid and coumaroyl anthocyanin forms than Cabernet Sauvignon from veraison onwards. Transcript profiling revealed coordinated increased transcript abundance for genes encoding enzymes of committing steps in the phenylpropanoid pathway. The anthocyanin metabolite profile showed F3′5′H-mediated delphinidin-type anthocyanin enrichment in both varieties towards maturation, consistent with the transcript data, indicating that the F3′5′H-governed branching step dominates the anthocyanin profile at late berry development. Correlation analysis confirmed the tightly coordinated metabolic changes during development, and suggested a source-sink relation between the central and specialized metabolism, stronger in Shiraz than Cabernet Sauvignon. RNAseq analysis also revealed that the two cultivars exhibited distinct pattern of changes in genes related to abscisic acid (ABA) biosynthesis enzymes.
Conclusions
Compared with CS, Shiraz showed higher number of significant correlations between metabolites, which together with the relatively higher expression of flavonoid genes supports the evidence of increased accumulation of coumaroyl anthocyanins in that cultivar. Enhanced stress related metabolism, e.g. trehalose, stilbene and ABA in Shiraz berry-skin are consistent with its relatively higher susceptibility to environmental cues.
doi:10.1186/s12870-014-0188-4
PMCID: PMC4222437  PMID: 25064275
Metabolite profiling; Grape berry metabolism; Grapevine; Transcript analysis; Metabolomics; GC-MS; LC-MS
2.  MetaDB a Data Processing Workflow in Untargeted MS-Based Metabolomics Experiments 
Due to their sensitivity and speed, mass-spectrometry based analytical technologies are widely used to in metabolomics to characterize biological phenomena. To address issues like metadata organization, quality assessment, data processing, data storage, and, finally, submission to public repositories, bioinformatic pipelines of a non-interactive nature are often employed, complementing the interactive software used for initial inspection and visualization of the data. These pipelines often are created as open-source software allowing the complete and exhaustive documentation of each step, ensuring the reproducibility of the analysis of extensive and often expensive experiments. In this paper, we will review the major steps which constitute such a data processing pipeline, discussing them in the context of an open-source software for untargeted MS-based metabolomics experiments recently developed at our institute. The software has been developed by integrating our metaMS R package with a user-friendly web-based application written in Grails. MetaMS takes care of data pre-processing and annotation, while the interface deals with the creation of the sample lists, the organization of the data storage, and the generation of survey plots for quality assessment. Experimental and biological metadata are stored in the ISA-Tab format making the proposed pipeline fully integrated with the Metabolights framework.
doi:10.3389/fbioe.2014.00072
PMCID: PMC4267269  PMID: 25566535
metabolomics; ISA-Tab; pipeline; data analysis; LC-MS; GC-MS
3.  Advanced Knowledge of Three Important Classes of Grape Phenolics: Anthocyanins, Stilbenes and Flavonols 
Grape is qualitatively and quantitatively very rich in polyphenols. In particular, anthocyanins, flavonols and stilbene derivatives play very important roles in plant metabolism, thanks to their peculiar characteristics. Anthocyanins are responsible for the color of red grapes and wines and confer organoleptic characteristics on the wine. They are used for chemotaxonomic studies and to evaluate the polyphenolic ripening stage of grape. They are natural colorants, have antioxidant, antimicrobial and anticarcinogenic activity, exert protective effects on the human cardiovascular system, and are used in the food and pharmaceutical industries. Stilbenes are vine phytoalexins present in grape berries and associated with the beneficial effects of drinking wine. The principal stilbene, resveratrol, is characterized by anticancer, antioxidant, anti-inflammatory and cardioprotective activity. Resveratrol dimers and oligomers also occur in grape, and are synthetized by the vine as active defenses against exogenous attack, or produced by extracellular enzymes released from pathogens in an attempt to eliminate undesirable toxic compounds. Flavonols are a ubiquitous class of flavonoids with photo-protection and copigmentation (together with anthocyanins) functions. The lack of expression of the enzyme flavonoid 3′,5′-hydroxylase in white grapes restricts the presence of these compounds to quercetin, kaempferol and isorhamnetin derivatives, whereas red grapes usually also contain myricetin, laricitrin and syringetin derivatives. In the last ten years, the technological development of analytical instrumentation, particularly mass spectrometry, has led to great improvements and further knowledge of the chemistry of these compounds. In this review, the biosynthesis and biological role of these grape polyphenols are briefly introduced, together with the latest knowledge of their chemistry.
doi:10.3390/ijms141019651
PMCID: PMC3821578  PMID: 24084717
grape; polyphenols; anthocyanins; stilbenes; flavonols
4.  Ellagitannins from Rubus Berries for the Control of Gastric Inflammation: In Vitro and In Vivo Studies 
PLoS ONE  2013;8(8):e71762.
Ellagitannins have shown anti-inflammatory and anti-Helicobacter pylori properties; however, their anti-inflammatory activity at gastric level was not previously investigated. The aim of this research was to evaluate the effects of ellagitannins from Rubus berries on gastric inflammation. Ellagitannin enriched extracts (ETs) were prepared from Rubus fruticosus L. (blackberry) and Rubus idaeus L. (raspberry). The anti-inflammatory activity was tested on gastric cell line AGS stimulated by TNF-α and IL-1β for evaluating the effect on NF-kB driven transcription, nuclear translocation and IL-8 secretion. In vivo the protective effect of ellagitannins was evaluated in a rat model of ethanol-induced gastric lesions. Rats were treated orally for ten days with 20 mg/kg/day of ETs, and ethanol was given one hour before the sacrifice. Gastric mucosa was isolated and used for the determination of IL-8 release, NF-kB nuclear translocation, Trolox equivalents, superoxide dismutase and catalase activities. In vitro, ETs inhibited TNF-α induced NF-kB driven transcription (IC50: 0.67–1.73 µg/mL) and reduced TNF-α-induced NF-kB nuclear translocation (57%–67% at 2 µg/mL). ETs inhibited IL-8 secretion induced by TNF-α and IL-1β at low concentrations (IC50 range of 0.7–4 µg/mL). Sanguiin H-6 and lambertianin C, the major ETs present in the extracts, were found to be responsible, at least in part, for the effect of the mixtures. ETs of blackberry and raspberry decreased Ulcer Index by 88% and 75% respectively and protected from the ethanol induced oxidative stress in rats. CINC-1 (the rat homologue of IL-8) secretion in the gastric mucosa was reduced in the animals receiving blackberry and raspberry ETs. The effect of ETs on CINC-1 was associated to a decrease of NF-κB nuclear translocation in ETs treated animals. The results of the present study report for the first time the preventing effect of ETs in gastric inflammation and support for their use in dietary regimens against peptic ulcer.
doi:10.1371/journal.pone.0071762
PMCID: PMC3733869  PMID: 23940786
5.  Apple Can Act as Anti-Aging on Yeast Cells 
In recent years, epidemiological and biochemical studies have shown that eating apples is associated with reduction of occurrence of cancer, degenerative, and cardiovascular diseases. This association is often attributed to the presence of antioxidants such as ascorbic acid (vitamin C) and polyphenols. The substances that hinder the presence of free radicals are also able to protect cells from aging. In our laboratory we used yeast, a unicellular eukaryotic organism, to determine in vivo efficacy of entire apples and their components, such as flesh, skin and polyphenolic fraction, to influence aging and oxidative stress. Our results indicate that all the apple components increase lifespan, with the best result given by the whole fruit, indicating a cooperative role of all apple components.
doi:10.1155/2012/491759
PMCID: PMC3437301  PMID: 22970337
6.  A Metabolomic Approach to the Study of Wine Micro-Oxygenation 
PLoS ONE  2012;7(5):e37783.
Wine micro-oxygenation is a globally used treatment and its effects were studied here by analysing by untargeted LC-MS the wine metabolomic fingerprint. Eight different procedural variations, marked by the addition of oxygen (four levels) and iron (two levels) were applied to Sangiovese wine, before and after malolactic fermentation.
Data analysis using supervised and unsupervised multivariate methods highlighted some known candidate biomarkers, together with a number of metabolites which had never previously been considered as possible biomarkers for wine micro-oxygenation. Various pigments and tannins were identified among the known candidate biomarkers. Additional new information was obtained suggesting a correlation between oxygen doses and metal contents and changes in the concentration of primary metabolites such as arginine, proline, tryptophan and raffinose, and secondary metabolites such as succinic acid and xanthine. Based on these findings, new hypotheses regarding the formation and reactivity of wine pigment during micro-oxygenation have been proposed. This experiment highlights the feasibility of using unbiased, untargeted metabolomic fingerprinting to improve our understanding of wine chemistry.
doi:10.1371/journal.pone.0037783
PMCID: PMC3360592  PMID: 22662221
7.  Resistance to Plasmopara viticola in a grapevine segregating population is associated with stilbenoid accumulation and with specific host transcriptional responses 
BMC Plant Biology  2011;11:114.
Background
Downy mildew, caused by the oomycete Plasmopara viticola, is a serious disease in Vitis vinifera, the most commonly cultivated grapevine species. Several wild Vitis species have instead been found to be resistant to this pathogen and have been used as a source to introgress resistance into a V. vinifera background. Stilbenoids represent the major phytoalexins in grapevine, and their toxicity is closely related to the specific compound. The aim of this study was to assess the resistance response to P. viticola of the Merzling × Teroldego cross by profiling the stilbenoid content of the leaves of an entire population and the transcriptome of resistant and susceptible individuals following infection.
Results
A three-year analysis of the population's response to artificial inoculation showed that individuals were distributed in nine classes ranging from total resistance to total susceptibility. In addition, quantitative metabolite profiling of stilbenoids in the population, carried out using HPLC-DAD-MS, identified three distinct groups differing according to the concentrations present and the complexity of their profiles. The high producers were characterized by the presence of trans-resveratrol, trans-piceid, trans-pterostilbene and up to thirteen different viniferins, nine of them new in grapevine.
Accumulation of these compounds is consistent with a resistant phenotype and suggests that they may contribute to the resistance response.
A preliminary transcriptional study using cDNA-AFLP selected a set of genes modulated by the oomycete in a resistant genotype. The expression of this set of genes in resistant and susceptible genotypes of the progeny population was then assessed by comparative microarray analysis.
A group of 57 genes was found to be exclusively modulated in the resistant genotype suggesting that they are involved in the grapevine-P. viticola incompatible interaction. Functional annotation of these transcripts revealed that they belong to the categories defense response, photosynthesis, primary and secondary metabolism, signal transduction and transport.
Conclusions
This study reports the results of a combined metabolic and transcriptional profiling of a grapevine population segregating for resistance to P. viticola. Some resistant individuals were identified and further characterized at the molecular level. These results will be valuable to future grapevine breeding programs.
doi:10.1186/1471-2229-11-114
PMCID: PMC3170253  PMID: 21838877
8.  Grapevine cell early activation of specific responses to DIMEB, a resveratrol elicitor 
BMC Genomics  2009;10:363.
Background
In response to pathogen attack, grapevine synthesizes phytoalexins belonging to the family of stilbenes. Grapevine cell cultures represent a good model system for studying the basic mechanisms of plant response to biotic and abiotic elicitors. Among these, modified β-cyclodextrins seem to act as true elicitors inducing strong production of the stilbene resveratrol.
Results
The transcriptome changes of Vitis riparia × Vitis berlandieri grapevine cells in response to the modified β-cyclodextrin, DIMEB, were analyzed 2 and 6 h after treatment using a suppression subtractive hybridization experiment and a microarray analysis respectively. At both time points, we identified a specific set of induced genes belonging to the general phenylpropanoid metabolism, including stilbenes and hydroxycinnamates, and to defence proteins such as PR proteins and chitinases. At 6 h we also observed a down-regulation of the genes involved in cell division and cell-wall loosening.
Conclusions
We report the first large-scale study of the molecular effects of DIMEB, a resveratrol inducer, on grapevine cell cultures. This molecule seems to mimic a defence elicitor which enhances the physical barriers of the cell, stops cell division and induces phytoalexin synthesis.
doi:10.1186/1471-2164-10-363
PMCID: PMC2743712  PMID: 19660119

Results 1-8 (8)