PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("matters, Ralf")
1.  Gene Cloning, Protein Characterization, and Alteration of Product Selectivity for the Trehalulose Hydrolase and Trehalulose Synthase from “Pseudomonas mesoacidophila” MX-45▿ †  
Applied and Environmental Microbiology  2009;75(22):7026-7036.
The naturally occurring structural isomer of sucrose, trehalulose, is produced by sucrose isomerase (SI). Screening of chromosomal DNA from “Pseudomonas mesoacidophila” MX-45 with an SI-specific probe facilitated the cloning of two adjacent gene homologs, mutA and mutB. Both genes were expressed separately in Escherichia coli, and their enzyme products were characterized. MutA hydrolyzed the substrates trehalulose, isomaltulose, and sucrose into glucose and fructose. Due to its highest activity on trehalulose, MutA was referred to as trehalulase. mutB encodes the SI (trehalulose synthase) and catalyzes the isomerization of sucrose to mainly trehalulose. From Northern blot analysis it is apparent that the mutB gene is not transcribed as part of an operon and was transcriptionally upregulated when P. mesoacidophila MX-45 cells were grown in sucrose medium, whereas under investigated conditions no transcript for mutA was detected. Mutants of mutB were created by a random mutagenesis approach in order to alter the product specificity of MutB. Two types of mutants have emerged, one type that prefers the hydrolytic reaction on sucrose and another type that still acts as an SI but with a significant shift in the product from trehalulose to isomaltulose. The hydrolytic character of MutB R311C was demonstrated through its higher catalytic efficiency for glucose production over trehalulose production. MutB D442N favored the transfer reaction, with an isomer preference for isomaltulose.
doi:10.1128/AEM.01781-09
PMCID: PMC2786503  PMID: 19783746
2.  Evolved β-Galactosidases from Geobacillus stearothermophilus with Improved Transgalactosylation Yield for Galacto-Oligosaccharide Production▿ †  
Applied and Environmental Microbiology  2009;75(19):6312-6321.
A mutagenesis approach was applied to the β-galactosidase BgaB from Geobacillus stearothermophilus KVE39 in order to improve its enzymatic transglycosylation of lactose into oligosaccharides. A simple screening strategy, which was based on the reduction of the hydrolysis of a potential transglycosylation product (lactosucrose), provided mutant enzymes possessing improved synthetic properties for the autocondensation product from nitrophenyl-galactoside and galacto-oligosaccharides (GOS) from lactose. The effects of the mutations on enzyme activity and kinetics were determined. An change of one arginine to lysine (R109K) increased the oligosaccharide yield compared to that for the wild-type BgaB. Subsequently, saturation mutagenesis at this position demonstrated that valine and tryptophan further increased the transglycosylation performance of BgaB. During the transglycosylation reaction with lactose of the evolved β-galactosidases, a major trisaccharide was formed. Its structure was characterized as β-d-galactopyranosyl-(1→3)-β-d-galactopyranosyl-(1→4)-d-glucopyranoside (3′-galactosyl-lactose). At the lactose concentration of 18% (wt/vol), this trisaccharide was obtained in yields of 11.5% (wt/wt) with GP21 (BgaB R109K), 21% with GP637.2 (BgaB R109V), and only 2% with the wild-type BgaB enzyme. GP643.3 (BgaB R109W) was shown to be the most efficient mutant, with a 3′-galactosyl-lactose production of 23%.
doi:10.1128/AEM.00714-09
PMCID: PMC2753058  PMID: 19666723
3.  Overexpression, purification, crystallization and preliminary diffraction studies of the Protaminobacter rubrum sucrose isomerase SmuA 
The P. rubrum sucrose isomerase SmuA, a key enzyme in the industrial production of isomaltulose, was crystallized and diffraction data were collected to 1.95 Å resolution.
Palatinose (isomaltulose, α-d-glucosylpyranosyl-1,6-d-fructofuranose), a nutritional and acariogenic reducing sugar, is industrially obtained from sucrose by using immobilized cells of Protaminobacter rubrum that produce the sucrose isomerase SmuA. The isomerization of sucrose catalyzed by this enzyme also results in the formation of trehalulose (α-d-glucosylpyranosyl-1,1-d-fructofuranose) in smaller amounts and glucose, fructose and eventually isomaltose as by-products, which lower the yield of the reaction and complicate the recovery of palatinose. The determination of the three-dimensional structure of SmuA will provide a basis for rational protein-engineering studies in order to optimize the industrial production of palatinose. A recombinant form of the 67.3 kDa SmuA enzyme has been crystallized in the native state by the vapour-diffusion method. Crystals belong to the orthorhombic space group P212121, with unit-cell parameters a = 61.6, b = 81.4, c = 135.6 Å, and diffract to 1.95 Å resolution on a synchrotron-radiation source.
doi:10.1107/S1744309105041758
PMCID: PMC2150920  PMID: 16511267
isomaltulose; industrial strain; sucrose isomerase; glycoside hydrolase family 13
4.  Expression, purification, crystallization and preliminary X-ray crystallographic studies of the trehalulose synthase MutB from Pseudomonas mesoacidophila MX-45 
The trehalulose synthase MutB from P. mesoacidophila MX-45 has been crystallized in two different crystal forms and diffraction data have been collected to 1.6 and 1.8 Å, respectively.
The trehalulose synthase (MutB) from Pseudomonas mesoacidophila MX-45, belonging to glycoside hydrolase family 13, catalyses the isomerization of sucrose to trehalulose (α-d-glucosylpyranosyl-1,1-d-fructofuranose) and isomaltulose (α-­d-glucosylpyranosyl-1,6-d-fructofuranose) as main products and glucose and fructose in residual amounts from the hydrolytic reaction. To date, a three-dimensional structure of a sucrose isomerase that produces mainly trehalulose, as is the case for MutB, has been lacking. Crystallographic studies of this 64 kDa enzyme have therefore been initiated in order to contribute to the understanding of the molecular basis of sucrose decomposition, isomerization and of the selectivity of this enzyme that leads to the formation of different products. The MutB protein has been overexpressed, purified and crystallized using the hanging-drop vapour-diffusion method. Two different crystal forms have been obtained: one diffracts X-rays to 1.6 Å resolution using synchrotron radiation and belongs to space group P1, with unit-cell parameters a = 63.8, b = 72.0, c = 82.2 Å, α = 67.5, β = 73.1, γ = 70.8°, while the other form diffracts to 1.8 Å resolution using synchrotron radiation and belongs to space group P21, with unit-cell parameters a = 63.7, b = 85.9, c = 119.7 Å, β = 97.7°. A molecular-replacement solution has been found using the structure of the isomaltulose synthase (PalI) from Klebsiella sp. LX3 as a search model.
doi:10.1107/S1744309104030623
PMCID: PMC1952383  PMID: 16508103
isomerases; hydrolases; trehalulose synthase
5.  Cloning of a Nitrilase Gene from the Cyanobacterium Synechocystis sp. Strain PCC6803 and Heterologous Expression and Characterization of the Encoded Protein 
The gene encoding a putative nitrilase was identified in the genome sequence of the photosynthetic cyanobacterium Synechocystis sp. strain PCC6803. The gene was amplified by PCR and cloned into an expression vector. The encoded protein was heterologously expressed in the native form and as a His-tagged protein in Escherichia coli, and the recombinant strains were shown to convert benzonitrile to benzoate. The active enzyme was purified to homogeneity and shown by gel filtration to consist probably of 10 subunits. The purified nitrilase converted various aromatic and aliphatic nitriles. The highest enzyme activity was observed with fumarodinitrile, but also some rather hydrophobic aromatic (e.g., naphthalenecarbonitrile), heterocyclic (e.g., indole-3-acetonitrile), or long-chain aliphatic (di-)nitriles (e.g., octanoic acid dinitrile) were converted with higher specific activities than benzonitrile. From aliphatic dinitriles with less than six carbon atoms only 1 mol of ammonia was released per mol of dinitrile, and thus presumably the corresponding cyanocarboxylic acids formed. The purified enzyme was active in the presence of a wide range of organic solvents and the turnover rates of dodecanoic acid nitrile and naphthalenecarbonitrile were increased in the presence of water-soluble and water-immiscible organic solvents.
doi:10.1128/AEM.69.8.4359-4366.2003
PMCID: PMC169084  PMID: 12902216
6.  Identification of Quinoide Redox Mediators That Are Formed during the Degradation of Naphthalene-2-Sulfonate by Sphingomonas xenophaga BN6 
During aerobic degradation of naphthalene-2-sulfonate (2NS), Sphingomonas xenophaga strain BN6 produces redox mediators which significantly increase the ability of the strain to reduce azo dyes under anaerobic conditions. It was previously suggested that 1,2-dihydroxynaphthalene (1,2-DHN), which is an intermediate in the degradative pathway of 2NS, is the precursor of these redox mediators. In order to analyze the importance of the formation of 1,2-DHN, the dihydroxynaphthalene dioxygenase gene (nsaC) was disrupted by gene replacement. The resulting strain, strain AKE1, did not degrade 2NS to salicylate. After aerobic preincubation with 2NS, strain AKE1 exhibited much higher reduction capacities for azo dyes under anaerobic conditions than the wild-type strain exhibited. Several compounds were present in the culture supernatants which enhanced the ability of S. xenophaga BN6 to reduce azo dyes under anaerobic conditions. Two major redox mediators were purified from the culture supernatants, and they were identified by high-performance liquid chromatography-mass spectrometry and comparison with chemically synthesized standards as 4-amino-1,2-naphthoquinone and 4-ethanolamino-1,2-naphthoquinone.
doi:10.1128/AEM.68.9.4341-4349.2002
PMCID: PMC124094  PMID: 12200285
8.  Thermoadaptation of α-Galactosidase AgaB1 in Thermus thermophilus 
Journal of Bacteriology  2002;184(12):3385-3391.
The evolutionary potential of a thermostable α-galactosidase, with regard to improved catalytic activity at high temperatures, was investigated by employing an in vivo selection system based on thermophilic bacteria. For this purpose, hybrid α-galactosidase genes of agaA and agaB from Bacillus stearothermophilus KVE39, designated agaA1 and agaB1, were cloned into an autonomously replicating Thermus vector and introduced into Thermus thermophilus OF1053GD (ΔagaT) by transformation. This selector strain is unable to metabolize melibiose (α-galactoside) without recombinant α-galactosidases, because the native α-galactosidase gene, agaT, has been deleted. Growth conditions were established under which the strain was able to utilize melibiose as a single carbohydrate source when harboring a plasmid-encoded agaA1 gene but unable when harboring a plasmid-encoded agaB1 gene. With incubation of the agaB1 plasmid-harboring strain under selective pressure at a restrictive temperature (67°C) in a minimal melibiose medium, spontaneous mutants as well as N-methyl-N′-nitro-N-nitrosoguanidine-induced mutants able to grow on the selective medium were isolated. The mutant α-galactosidase genes were amplified by PCR, cloned in Escherichia coli, and sequenced. A single-base substitution that replaces glutamic acid residue 355 with glycine or valine was found in the mutant agaB1 genes. The mutant enzymes displayed the optimum hydrolyzing activity at higher temperatures together with improved catalytic capacity compared to the wild-type enzyme and furthermore showed an enhanced thermal stability. To our knowledge, this is the first report of an in vivo evolution of glycoside-hydrolyzing enzyme and selection within a thermophilic host cell.
doi:10.1128/JB.184.12.3385-3391.2002
PMCID: PMC135109  PMID: 12029056
9.  Production of Recombinant α-Galactosidases in Thermus thermophilus 
A Thermus thermophilus selector strain for production of thermostable and thermoactive α-galactosidase was constructed. For this purpose, the native α-galactosidase gene (agaT) of T. thermophilus TH125 was inactivated to prevent background activity. In our first attempt, insertional mutagenesis of agaT by using a cassette carrying a kanamycin resistance gene led to bacterial inability to utilize melibiose (α-galactoside) and galactose as sole carbohydrate sources due to a polar effect of the insertional inactivation. A Gal+ phenotype was assumed to be essential for growth on melibiose. In a Gal− background, accumulation of galactose or its metabolite derivatives produced from melibiose hydrolysis could interfere with the growth of the host strain harboring recombinant α-galactosidase. Moreover, the AgaT− strain had to be Kms for establishment of the plasmids containing α-galactosidase genes and the kanamycin resistance marker. Therefore, a suitable selector strain (AgaT− Gal+ Kms) was generated by applying integration mutagenesis in combination with phenotypic selection. To produce heterologous α-galactosidase in T. thermophilus, the isogenes agaA and agaB of Bacillus stearothermophilus KVE36 were cloned into an Escherichia coli-Thermus shuttle vector. The region containing the E. coli plasmid sequence (pUC-derived vector) was deleted before transformation of T. thermophilus with the recombinant plasmids. As a result, transformation efficiency and plasmid stability were improved. However, growth on minimal agar medium containing melibiose was achieved only following random selection of the clones carrying a plasmid-based mutation that had promoted a higher copy number and greater stability of the plasmid.
doi:10.1128/AEM.67.9.4192-4198.2001
PMCID: PMC93147  PMID: 11526023
10.  Cloning of the Gene Encoding a Novel Thermostable α-Galactosidase from Thermus brockianus ITI360 
An α-galactosidase gene from Thermus brockianus ITI360 was cloned, sequenced, and expressed in Escherichia coli, and the recombinant protein was purified. The gene, designated agaT, codes for a 476-residue polypeptide with a calculated molecular mass of 53,810 Da. The native structure of the recombinant enzyme (AgaT) was estimated to be a tetramer. AgaT displays amino acid sequence similarity to the α-galactosidases of Thermotoga neapolitana and Thermotoga maritima and a low-level sequence similarity to α-galactosidases of family 36 in the classification of glycosyl hydrolases. The enzyme is thermostable, with a temperature optimum of activity at 93°C with para-nitrophenyl-α-galactopyranoside as a substrate. Half-lives of inactivation at 92 and 80°C are 100 min and 17 h, respectively. The pH optimum is between 5.5 and 6.5. The enzyme displayed high affinity for oligomeric substrates. The Kms for melibiose and raffinose at 80°C were determined as 4.1 and 11.0 mM, respectively. The α-galactosidase gene in T. brockianus ITI360 was inactivated by integrational mutagenesis. Consequently, no α-galactosidase activity was detectable in crude extracts of the mutant strain, and it was unable to use melibiose or raffinose as a single carbohydrate source.
PMCID: PMC99726  PMID: 10473401
11.  Procaryotic Expression of Single-Chain Variable-Fragment (scFv) Antibodies: Secretion in L-Form Cells of Proteus mirabilis Leads to Active Product and Overcomes the Limitations of Periplasmic Expression in Escherichia coli 
Applied and Environmental Microbiology  1998;64(12):4862-4869.
Recently it has been demonstrated that L-form cells of Proteus mirabilis (L VI), which lack a periplasmic compartment, can be efficiently used in the production and secretion of heterologous proteins. In search of novel expression systems for recombinant antibodies, we compared levels of single-chain variable-fragment (scFv) production in Escherichia coli JM109 and P. mirabilis L VI, which express four distinct scFvs of potential clinical interest that show differences in levels of expression and in their tendencies to form aggregates upon periplasmic expression. Production of all analyzed scFvs in E. coli was limited by the severe toxic effect of the heterologous product as indicated by inhibition of culture growth and the formation of insoluble aggregates in the periplasmic space, limiting the yield of active product. In contrast, the L-form cells exhibited nearly unlimited growth under the tested production conditions for all scFvs examined. Moreover, expression experiments with P. mirabilis L VI led to scFv concentrations in the range of 40 to 200 mg per liter of culture medium (corresponding to volume yields 33- to 160-fold higher than those with E. coli JM109), depending on the expressed antibody. In a translocation inhibition experiment the secretion of the scFv constructs was shown to be an active transport coupled to the signal cleavage. We suppose that this direct release of the newly synthesized product into a large volume of the growth medium favors folding into the native active structure. The limited aggregation of scFv observed in the P. mirabilis L VI supernatant (occurring in a first-order-kinetics manner) was found to be due to intrinsic features of the scFv and not related to the expression process of the host cells. The P. mirabilis L VI supernatant was found to be advantageous for scFv purification. A two-step chromatography procedure led to homogeneous scFv with high antigen binding activity as revealed from binding experiments with eukaryotic cells.
PMCID: PMC90935  PMID: 9835575

Results 1-11 (11)