PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (107)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  The Missense of Smell: Functional Variability in the Human Odorant Receptor Repertoire 
Nature neuroscience  2013;17(1):114-120.
Humans have approximately 400 intact odorant receptors, but each individual has a unique set of genetic variations that lead to variation in olfactory perception. We used a heterologous assay to determine how often genetic polymorphisms in odorant receptors alter receptor function. We identified agonists for 18 odorant receptors and found that 63% of the odorant receptors we examined had polymorphisms that altered in vitro function. On average, two individuals differ functionally at over 30% of their odorant receptor alleles. To show that these in vitro results are relevant to olfactory perception, we verified that variations in OR10G4 genotype explain over 15% of the observed variation in perceived intensity and over 10% of the observed variation in perceived valence for the high affinity in vitro agonist guaiacol, but do not explain phenotypic variation for the lower affinity agonists vanillin and ethyl vanillin.
doi:10.1038/nn.3598
PMCID: PMC3990440  PMID: 24316890
2.  Preference-Based Serial Decision Dynamics: Your First Sushi Reveals Your Eating Order at the Sushi Table 
PLoS ONE  2014;9(5):e96653.
In everyday life, we regularly choose among multiple items serially such as playing music in a playlist or determining priorities in a to-do list. However, our behavioral strategy to determine the order of choice is poorly understood. Here we defined ‘the sushi problem’ as how we serially choose multiple items of different degrees of preference when multiple sequences are possible, and no particular order is necessarily better than another, given that all items will eventually be chosen. In the current study, participants selected seven sushi pieces sequentially at the lunch table, and we examined the relationship between eating order and preference. We found two dominant selection strategies, with one group selecting in order from most to least preferred, and the other doing the opposite, which were significantly different from patterns generated from a random strategy. Interestingly, we found that more females tended to employ the favorite-first rather than favorite-last strategy. These two choice sequences appear to reflect two opposing behavioral strategies that might provide selective advantages in their own right, while also helping to provide solutions to otherwise unconstrained problems.
doi:10.1371/journal.pone.0096653
PMCID: PMC4028175  PMID: 24846274
3.  Consequences of a Human TRPA1 Genetic Variant on the Perception of Nociceptive and Olfactory Stimuli 
PLoS ONE  2014;9(4):e95592.
Background
TRPA1 ion channels are involved in nociception and are also excited by pungent odorous substances. Based on reported associations of TRPA1 genetics with increased sensitivity to thermal pain stimuli, we therefore hypothesized that this association also exists for increased olfactory sensitivity.
Methods
Olfactory function and nociception was compared between carriers (n = 38) and non-carriers (n = 43) of TRPA1 variant rs11988795 G>A, a variant known to enhance cold pain perception. Olfactory function was quantified by assessing the odor threshold, odor discrimination and odor identification, and by applying 200-ms pulses of H2S intranasal. Nociception was assessed by measuring pain thresholds to experimental nociceptive stimuli (blunt pressure, electrical stimuli, cold and heat stimuli, and 200-ms intranasal pulses of CO2).
Results
Among the 11 subjects with moderate hyposmia, carriers of the minor A allele (n = 2) were underrepresented (34 carriers among the 70 normosmic subjects; p = 0.049). Moreover, carriers of the A allele discriminated odors significantly better than non-carriers (13.1±1.5 versus 12.3±1.6 correct discriminations) and indicated a higher intensity of the H2S stimuli (29.2±13.2 versus 21±12.8 mm VAS, p = 0.006), which, however, could not be excluded to have involved a trigeminal component during stimulation. Finally, the increased sensitivity to thermal pain could be reproduced.
Conclusions
The findings are in line with a previous association of a human TRPA1 variant with nociceptive parameters and extend the association to the perception of odorants. However, this addresses mainly those stimulants that involve a trigeminal component whereas a pure olfactory effect may remain disputable. Nevertheless, findings suggest that future TRPA1 modulating drugs may modify the perception of odorants.
doi:10.1371/journal.pone.0095592
PMCID: PMC4005389  PMID: 24752136
4.  ANS Responses and Facial Expressions Differentiate between the Taste of Commercial Breakfast Drinks 
PLoS ONE  2014;9(4):e93823.
The high failure rate of new market introductions, despite initial successful testing with traditional sensory and consumer tests, necessitates the development of other tests. This study explored the ability of selected physiological and behavioral measures of the autonomic nervous system (ANS) to distinguish between repeated exposures to foods from a single category (breakfast drinks) and with similar liking ratings. In this within-subject study 19 healthy young adults sipped from five breakfast drinks, each presented five times, while ANS responses (heart rate, skin conductance response and skin temperature), facial expressions, liking, and intensities were recorded. The results showed that liking was associated with increased heart rate and skin temperature, and more neutral facial expressions. Intensity was associated with reduced heart rate and skin temperature, more neutral expressions and more negative expressions of sadness, anger and surprise. Strongest associations with liking were found after 1 second of tasting, whereas strongest associations with intensity were found after 2 seconds of tasting. Future studies should verify the contribution of the additional information to the prediction of market success.
doi:10.1371/journal.pone.0093823
PMCID: PMC3979707  PMID: 24714107
5.  Genetic Signatures for Enhanced Olfaction in the African Mole-Rats 
PLoS ONE  2014;9(4):e93336.
The Olfactory Receptor (OR) superfamily, the largest in the vertebrate genome, is responsible for vertebrate olfaction and is traditionally subdivided into 17 OR families. Recent studies characterising whole-OR subgenomes revealed a ‘birth and death’ model of evolution for a range of species, however little is known about fine-scale evolutionary dynamics within single-OR families. This study reports the first assessment of fine-scale OR evolution and variation in African mole-rats (Bathyergidae), a family of subterranean rodents endemic to sub-Saharan Africa. Because of the selective pressures of life underground, enhanced olfaction is proposed to be fundamental to the evolutionary success of the Bathyergidae, resulting in a highly diversified OR gene-repertoire. Using a PCR-sequencing approach, we analysed variation in the OR7 family across 14 extant bathyergid species, which revealed enhanced levels of functional polymorphisms concentrated across the receptors’ ligand-binding region. We propose that mole-rats are able to recognise a broad range of odorants and that this diversity is reflected throughout their OR7 gene repertoire. Using both classic tests and tree-based methods to test for signals of selection, we investigate evolutionary forces across the mole-rat OR7 gene tree. Four well-supported clades emerged in the OR phylogeny, with varying signals of selection; from neutrality to positive and purifying selection. Bathyergid life-history traits and environmental niche-specialisation are explored as possible drivers of adaptive OR evolution, emerging as non-exclusive contributors to the positive selection observed at OR7 genes. Our results reveal unexpected complexity of evolutionary mechanisms acting within a single OR family, providing insightful perspectives into OR evolutionary dynamics.
doi:10.1371/journal.pone.0093336
PMCID: PMC3974769  PMID: 24699281
6.  Understanding Aroma Release from Model Cheeses by a Statistical Multiblock Approach on Oral Processing 
PLoS ONE  2014;9(4):e93113.
For human beings, the mouth is the first organ to perceive food and the different signalling events associated to food breakdown. These events are very complex and as such, their description necessitates combining different data sets. This study proposed an integrated approach to understand the relative contribution of main food oral processing events involved in aroma release during cheese consumption. In vivo aroma release was monitored on forty eight subjects who were asked to eat four different model cheeses varying in fat content and firmness and flavoured with ethyl propanoate and nonan-2-one. A multiblock partial least square regression was performed to explain aroma release from the different physiological data sets (masticatory behaviour, bolus rheology, saliva composition and flux, mouth coating and bolus moistening). This statistical approach was relevant to point out that aroma release was mostly explained by masticatory behaviour whatever the cheese and the aroma, with a specific influence of mean amplitude on aroma release after swallowing. Aroma release from the firmer cheeses was explained mainly by bolus rheology. The persistence of hydrophobic compounds in the breath was mainly explained by bolus spreadability, in close relation with bolus moistening. Resting saliva poorly contributed to the analysis whereas the composition of stimulated saliva was negatively correlated with aroma release and mostly for soft cheeses, when significant.
doi:10.1371/journal.pone.0093113
PMCID: PMC3972224  PMID: 24691625
7.  Reduced Pleasant Touch Appraisal in the Presence of a Disgusting Odor 
PLoS ONE  2014;9(3):e92975.
Objectives
Odors are powerful emotional stimuli influencing mood, attention and behavior. Here we examined if odors change the perception of pleasant touch. In line with the warning function of the olfactory system, we proposed that especially unpleasant odors will reduce touch pleasantness, presumably through a disgust-related mechanism.
Methods
Forty-five healthy participants (mean age 23.3 +/− 3years SD, 24 females) were presented to slow (3 cm/s) and fast (30 cm/s) brush stroking delivered by a robot to the forearm. Touch pleasantness under the influence of an unpleasant odor (Civette, smelling like feces) and an intensity matched pleasant odor (Rose) was compared to an odorless control condition. In a pilot study with 30 participants (mean age 25.9 +/−6 years, 21 females), the odors were matched according to their intensity, and we studied the influence of disgust sensitivity on the perception of 4 different odor qualities.
Results
The unpleasant odor decreased touch pleasantness for both stroking velocities compared to the odorless control (p<0.005) whereas the rose odor did not change touch pleasantness significantly. Disgust sensitivity was correlated with the modulation of touch pleasantness. The pilot study revealed a significant correlation between disgust sensitivity and the perception of the unpleasant odor qualities (r = −0.56; p = 0.007), but not with any of the other odors.
Conclusion
Unpleasant odors are powerful in modulating touch pleasantness, and disgust might be a moderating variable.
doi:10.1371/journal.pone.0092975
PMCID: PMC3963971  PMID: 24664177
8.  Detecting Fat Content of Food from a Distance: Olfactory-Based Fat Discrimination in Humans 
PLoS ONE  2014;9(1):e85977.
The desire to consume high volumes of fat is thought to originate from an evolutionary pressure to hoard calories, and fat is among the few energy sources that we can store over a longer time period. From an ecological perspective, however, it would be beneficial to detect fat from a distance, before ingesting it. Previous results indicate that humans detect high concentrations of fatty acids by their odor. More important though, would be the ability to detect fat content in real food products. In a series of three sequential experiments, using study populations from different cultures, we demonstrated that individuals are able to reliably detect fat content of food via odors alone. Over all three experiments, results clearly demonstrated that humans were able to detect minute differences between milk samples with varying grades of fat, even when embedded within a milk odor. Moreover, we found no relation between this performance and either BMI or dairy consumption, thereby suggesting that this is not a learned ability or dependent on nutritional traits. We argue that our findings that humans can detect the fat content of food via odors may open up new and innovative future paths towards a general reduction in our fat intake, and future studies should focus on determining the components in milk responsible for this effect.
doi:10.1371/journal.pone.0085977
PMCID: PMC3899094  PMID: 24465822
9.  General Olfactory Sensitivity Database (GOSdb): Candidate Genes and their Genomic Variations 
Human mutation  2012;34(1):32-41.
Genetic variations in olfactory receptors likely contribute to the diversity of odorant-specific sensitivity phenotypes. Our working hypothesis is that genetic variations in auxiliary olfactory genes, including those mediating transduction and sensory neuronal development, may constitute the genetic basis for general olfactory sensitivity (GOS) and congenital general anosmia (CGA). We thus performed a systematic exploration for auxiliary olfactory genes and their documented variation. This included a literature survey, seeking relevant functional in vitro studies, mouse gene knockouts and human disorders with olfactory phenotypes, as well as data mining in published transcriptome and proteome data for genes expressed in olfactory tissues. In addition, we performed next-generation transcriptome sequencing (RNA-seq) of human olfactory epithelium and mouse olfactory epithelium and bulb, so as to identify sensory-enriched transcripts. Employing a global score system based on attributes of the 11 data sources utilized, we identified a list of 1,680 candidate auxiliary olfactory genes, of which 450 are shortlisted as having higher probability of a functional role. For the top-scoring 136 genes, we identified genomic variants (probably damaging single nucleotide polymorphisms, indels, and copy number deletions) gleaned from public variation repositories. This database of genes and their variants should assist in rationalizing the great interindividual variation in human overall olfactory sensitivity (http://genome.weizmann.ac.il/GOSdb).
doi:10.1002/humu.22212
PMCID: PMC3627721  PMID: 22936402
olfactory candidate genes; congenital general anosmia; RNA-seqIntroduction
10.  Homotypic and Heterotypic Adhesion Induced by Odorant Receptors and the β2-Adrenergic Receptor 
PLoS ONE  2013;8(12):e80100.
In the mouse olfactory system regulated expression of a large family of G Protein-Coupled Receptors (GPCRs), the Odorant Receptors (ORs), provides each sensory neuron with a single OR identity. In the wiring of the olfactory sensory neuron projections, a complex axon sorting process ensures the segregation of >1,000 subpopulations of axons of the same OR identity into homogeneously innervated glomeruli. ORs are critical determinants in axon sorting, and their presence on olfactory axons raises the intriguing possibility that they may participate in axonal wiring through direct or indirect trans-interactions mediating adhesion or repulsion between axons. In the present work, we used a biophysical assay to test the capacity of ORs to induce adhesion of cell doublets overexpressing these receptors. We also tested the β2 Adrenergic Receptor, a non-OR GPCR known to recapitulate the functions of ORs in olfactory axon sorting. We report here the first evidence for homo- and heterotypic adhesion between cells overexpressing the ORs MOR256-17 or M71, supporting the hypothesis that ORs may contribute to olfactory axon sorting by mediating differential adhesion between axons.
doi:10.1371/journal.pone.0080100
PMCID: PMC3846556  PMID: 24312457
11.  Changes in Cerebral Blood Flow during Olfactory Stimulation in Patients with Multiple Chemical Sensitivity: A Multi-Channel Near-Infrared Spectroscopic Study 
PLoS ONE  2013;8(11):e80567.
Multiple chemical sensitivity (MCS) is characterized by somatic distress upon exposure to odors. Patients with MCS process odors differently from controls. This odor-processing may be associated with activation in the prefrontal area connecting to the anterior cingulate cortex, which has been suggested as an area of odorant-related activation in MCS patients. In this study, activation was defined as a significant increase in regional cerebral blood flow (rCBF) because of odorant stimulation. Using the well-designed card-type olfactory test kit, changes in rCBF in the prefrontal cortex (PFC) were investigated after olfactory stimulation with several different odorants. Near-infrared spectroscopic (NIRS) imaging was performed in 12 MCS patients and 11 controls. The olfactory stimulation test was continuously repeated 10 times. The study also included subjective assessment of physical and psychological status and the perception of irritating and hedonic odors. Significant changes in rCBF were observed in the PFC of MCS patients on both the right and left sides, as distinct from the center of the PFC, compared with controls. MCS patients adequately distinguished the non-odorant in 10 odor repetitions during the early stage of the olfactory stimulation test, but not in the late stage. In comparison to controls, autonomic perception and negative affectivity were poorer in MCS patients. These results suggest that prefrontal information processing associated with odor-processing neuronal circuits and memory and cognition processes from past experience of chemical exposure play significant roles in the pathology of this disorder.
doi:10.1371/journal.pone.0080567
PMCID: PMC3836968  PMID: 24278291
12.  Genetic Variation in the Odorant Receptor OR2J3 Is Associated with the Ability to Detect the “Grassy” Smelling Odor, cis-3-hexen-1-ol 
Chemical Senses  2012;37(7):585-593.
The ability to detect many odors varies among individuals; however, the contribution of genotype to this variation has been assessed for relatively few compounds. We have identified a genetic basis for the ability to detect the flavor compound cis-3-hexen-1-ol. This compound is typically described as “green grassy” or the smell of “cut grass,” with variation in the ability to detect it linked to single nucleotide polymorphisms (SNPs) in a region on human chromosome 6 containing 25 odorant receptor genes. We have sequenced the coding regions of all 25 receptors across an ethnically mixed population of 52 individuals and identified 147 sequence variants. We tested these for association with cis-3-hexen-1-ol detection thresholds and found 3 strongly associated SNPs, including one found in a functional odorant receptor (rs28757581 in OR2J3). In vitro assays of 13 odorant receptors from the region identified 3 receptors that could respond to cis-3-hexen-1-ol, including OR2J3. This gene contained 5 predicted haplotypes across the 52 individuals. We tested all 5 haplotypes in vitro and several amino acid substitutions on their own, such as rs28757581 (T113A). Two amino acid substitutions, T113A and R226Q, impaired the ability of OR2J3 to respond to cis-3-hexen-1-ol, and together these two substitutions effectively abolished the response to the compound. The haplotype of OR2J3 containing both T113A and R226Q explains 26.4% of the variation in cis-3-hexen-1-ol detection in our study cohort. Further research is required to examine whether OR2J3 haplotypes explain variation in perceived flavor experience and the consumption of foods containing cis-3-hexen-1-ol.
doi:10.1093/chemse/bjs049
PMCID: PMC3408771  PMID: 22714804
cis-3-hexen-1-ol; genetic association; odor; odorant receptor; threshold of detection
13.  Prenatal Stress Inhibits Hippocampal Neurogenesis but Spares Olfactory Bulb Neurogenesis 
PLoS ONE  2013;8(8):e72972.
The dentate gyrus (DG) and the olfactory bulb (OB) are two regions of the adult brain in which new neurons are integrated daily in the existing networks. It is clearly established that these newborn neurons are implicated in specific functions sustained by these regions and that different factors can influence neurogenesis in both structures. Among these, life events, particularly occurring during early life, were shown to profoundly affect adult hippocampal neurogenesis and its associated functions like spatial learning, but data regarding their impact on adult bulbar neurogenesis are lacking. We hypothesized that prenatal stress could interfere with the development of the olfactory system, which takes place during the prenatal period, leading to alterations in adult bulbar neurogenesis and in olfactory capacities. To test this hypothesis we exposed pregnant C57Bl/6J mice to gestational restraint stress and evaluated behavioral and anatomic consequences in adult male offspring.
We report that prenatal stress has no impact on adult bulbar neurogenesis, and does not alter olfactory functions in adult male mice. However, it decreases cell proliferation and neurogenesis in the DG of the hippocampus, thus confirming previous reports on rats. Altogether our data support a selective and cross-species long-term impact of prenatal stress on neurogenesis.
doi:10.1371/journal.pone.0072972
PMCID: PMC3756947  PMID: 24009723
14.  Odors and Sensations of Humidity and Dryness in Relation to Sick Building Syndrome and Home Environment in Chongqing, China 
PLoS ONE  2013;8(8):e72385.
The prevalence of perceptions of odors and sensations of air humidity and sick building syndrome symptoms in domestic environments were studied using responses to a questionnaire on the home environment. Parents of 4530 1–8 year old children from randomly selected kindergartens in Chongqing, China participated. Stuffy odor, unpleasant odor, pungent odor, mold odor, tobacco smoke odor, humid air and dry air in the last three month (weekly or sometimes) was reported by 31.4%, 26.5%, 16.1%, 10.6%, 33.0%, 32.1% and 37.2% of the parents, respectively. The prevalence of parents’ SBS symptoms (weekly or sometimes) were: 78.7% for general symptoms, 74.3% for mucosal symptoms and 47.5% for skin symptoms. Multi-nominal regression analyses for associations between odors/sensations of air humidity and SBS symptoms showed that the odds ratio for “weekly” SBS symptoms were consistently higher than for “sometimes” SBS symptoms. Living near a main road or highway, redecoration, and new furniture were risk factors for perceptions of odors and sensations of humid air and dry air. Dampness related problems (mold spots, damp stains, water damage and condensation) were all risk factors for perceptions of odors and sensations of humid air and dry air, as was the presence of cockroaches, rats, and mosquitoes/flies, use of mosquito-repellent incense and incense. Protective factors included cleaning the child’s bedroom every day and frequently exposing bedding to sunshine. In conclusion, adults’ perceptions of odors and sensations of humid air and dry air are related to factors of the home environment and SBS symptoms are related to odor perceptions.
doi:10.1371/journal.pone.0072385
PMCID: PMC3753273  PMID: 23991107
15.  Urinary Lipocalin Protein in a Female Rodent with Correlation to Phases in the Estrous Cycle: An Experimental Study Accompanied by In Silico Analysis 
PLoS ONE  2013;8(8):e71357.
Male urinary lipocalin family proteins, practically odorant-binding proteins but also could be pheromones by themselves, in rodents act as a shuttle for chemosignal communication and facilitate delivery of the signals for access to congeners. However, presence of this protein in urine of female rodents has not yet been reported. Therefore, the present investigation was carried out to find if lipocalin family protein is present in the urine of female house rat and, if so, to find whether its expression differs between the phases in the estrous cycle. The rat urinary protein was separated in single dimensional gel electrophoresis. A 14.5 kDa lipocalin protein appeared in the urine prominently during the estrus and metestrus phases compared to proestrus and diestrus phases. The expression of this protein in the urine was very low in ovariectomized rats. MALDI-TOF/MS analysis affirmed the 14.5 kDa protein as a lipocalin family protein. Analysis adopting bio-informatics tools further proved the protein as a lipocalin family member. Thus, this study for the first time demonstrated the presence of a lipocalin family protein in the urine of a female rodent and it was highly expressed during estrus phase. This lipocalin protein in female rat urine may facilitate a chemosignal function independently of a pheromone or in association with a specific pheromone.
doi:10.1371/journal.pone.0071357
PMCID: PMC3743767  PMID: 23967199
16.  Long-Term Artificial Sweetener Acesulfame Potassium Treatment Alters Neurometabolic Functions in C57BL/6J Mice 
PLoS ONE  2013;8(8):e70257.
With the prevalence of obesity, artificial, non-nutritive sweeteners have been widely used as dietary supplements that provide sweet taste without excessive caloric load. In order to better understand the overall actions of artificial sweeteners, especially when they are chronically used, we investigated the peripheral and central nervous system effects of protracted exposure to a widely used artificial sweetener, acesulfame K (ACK). We found that extended ACK exposure (40 weeks) in normal C57BL/6J mice demonstrated a moderate and limited influence on metabolic homeostasis, including altering fasting insulin and leptin levels, pancreatic islet size and lipid levels, without affecting insulin sensitivity and bodyweight. Interestingly, impaired cognitive memory functions (evaluated by Morris Water Maze and Novel Objective Preference tests) were found in ACK-treated C57BL/6J mice, while no differences in motor function and anxiety levels were detected. The generation of an ACK-induced neurological phenotype was associated with metabolic dysregulation (glycolysis inhibition and functional ATP depletion) and neurosynaptic abnormalities (dysregulation of TrkB-mediated BDNF and Akt/Erk-mediated cell growth/survival pathway) in hippocampal neurons. Our data suggest that chronic use of ACK could affect cognitive functions, potentially via altering neuro-metabolic functions in male C57BL/6J mice.
doi:10.1371/journal.pone.0070257
PMCID: PMC3737213  PMID: 23950916
17.  Activity-Dependent Modulation of Odorant Receptor Gene Expression in the Mouse Olfactory Epithelium 
PLoS ONE  2013;8(7):e69862.
Activity plays critical roles in development and maintenance of the olfactory system, which undergoes considerable neurogenesis throughout life. In the mouse olfactory epithelium, each olfactory sensory neuron (OSN) stably expresses a single odorant receptor (OR) type out of a repertoire of ∼1200 and the OSNs with the same OR identity are distributed within one of the few broadly-defined zones. However, it remains elusive whether and how activity modulates such OR expression patterns. Here we addressed this question by investigating OR gene expression via in situ hybridization when sensory experience or neuronal excitability is manipulated. We first examined the expression patterns of fifteen OR genes in mice which underwent neonatal, unilateral naris closure. After four-week occlusion, the cell density in the closed (sensory-deprived) side was significantly lower (for four ORs), similar (for three ORs), or significantly higher (for eight ORs) as compared to that in the open (over-stimulated) side, suggesting that sensory inputs have differential effects on OSNs expressing different OR genes. We next examined the expression patterns of seven OR genes in transgenic mice in which mature OSNs had reduced neuronal excitability. Neuronal silencing led to a significant reduction in the cell density for most OR genes tested and thinner olfactory epithelium with an increased density of apoptotic cells. These results suggest that sensory experience plays important roles in shaping OR gene expression patterns and the neuronal activity is critical for survival of OSNs.
doi:10.1371/journal.pone.0069862
PMCID: PMC3726745  PMID: 23922828
18.  Mating Increases Neuronal Tyrosine Hydroxylase Expression and Selectively Gates Transmission of Male Chemosensory Information in Female Mice 
PLoS ONE  2013;8(7):e69943.
Exposure to chemosensory signals from unfamiliar males can terminate pregnancy in recently mated female mice. The number of tyrosine hydroxylase-positive neurons in the main olfactory bulb has been found to increase following mating and has been implicated in preventing male-induced pregnancy block during the post-implantation period. In contrast, pre-implantation pregnancy block is mediated by the vomeronasal system, and is thought to be prevented by selective inhibition of the mate’s pregnancy blocking chemosignals, at the level of the accessory olfactory bulb. The objectives of this study were firstly to identify the level of the vomeronasal pathway at which selective inhibition of the mate’s pregnancy blocking chemosignals occurs. Secondly, to determine whether a post-mating increase in tyrosine hydroxylase-positive neurons is observed in the vomeronasal system, which could play a role in preventing pre-implantation pregnancy block. Immunohistochemical staining revealed that mating induced an increase in tyrosine-hydroxylase positive neurons in the arcuate hypothalamus of BALB/c females, and suppressed c-Fos expression in these neurons in response to mating male chemosignals. This selective suppression of c-Fos response to mating male chemosignals was not apparent at earlier levels of the pregnancy-blocking neural pathway in the accessory olfactory bulb or corticomedial amygdala. Immunohistochemical staining revealed an increase in the number of tyrosine hydroxylase-positive neurons in the accessory olfactory bulb of BALB/c female mice following mating. However, increased dopamine-mediated inhibition in the accessory olfactory bulb is unlikely to account for the prevention of pregnancy block to the mating male, as tyrosine hydroxylase expression did not increase in females of the C57BL/6 strain, which show normal mate recognition. These findings reveal an association of mating with increased dopaminergic modulation in the pregnancy block pathway and support the hypothesis that mate recognition prevents pregnancy block by suppressing the activation of arcuate dopamine release.
doi:10.1371/journal.pone.0069943
PMCID: PMC3723660  PMID: 23936125
19.  The Transcriptomic Basis of Oviposition Behaviour in the Parasitoid Wasp Nasonia vitripennis 
PLoS ONE  2013;8(7):e68608.
Linking behavioural phenotypes to their underlying genotypes is crucial for uncovering the mechanisms that underpin behaviour and for understanding the origins and maintenance of genetic variation in behaviour. Recently, interest has begun to focus on the transcriptome as a route for identifying genes and gene pathways associated with behaviour. For many behavioural traits studied at the phenotypic level, we have little or no idea of where to start searching for “candidate” genes: the transcriptome provides such a starting point. Here we consider transcriptomic changes associated with oviposition in the parasitoid wasp Nasonia vitripennis. Oviposition is a key behaviour for parasitoids, as females are faced with a variety of decisions that will impact offspring fitness. These include choosing between hosts of differing quality, as well as making decisions regarding clutch size and offspring sex ratio. We compared the whole-body transcriptomes of resting or ovipositing female Nasonia using a “DeepSAGE” gene expression approach on the Illumina sequencing platform. We identified 332 tags that were significantly differentially expressed between the two treatments, with 77% of the changes associated with greater expression in resting females. Oviposition therefore appears to focus gene expression away from a number of physiological processes, with gene ontologies suggesting that aspects of metabolism may be down-regulated during egg-laying. Nine of the most abundant differentially expressed tags showed greater expression in ovipositing females though, including the genes purity-of-essence (associated with behavioural phenotypes in Drosophila) and glucose dehydrogenase (GLD). The GLD protein has been implicated in sperm storage and release in Drosophila and so provides a possible candidate for the control of sex allocation by female Nasonia during oviposition. Oviposition in Nasonia therefore clearly modifies the transcriptome, providing a starting point for the genetic dissection of oviposition.
doi:10.1371/journal.pone.0068608
PMCID: PMC3716692  PMID: 23894324
20.  Effect of Aging on Hedonic Appreciation of Pleasant and Unpleasant Odors 
PLoS ONE  2013;8(4):e61376.
Does hedonic appreciation evolve differently for pleasant odors and unpleasant odors during normal aging? To answer this question we combined psychophysics and electro-encephalographic recordings in young and old adults. A first study showed that pleasant odorants (but not unpleasant ones) were rated as less pleasant by old adults. A second study validated this decrease in hedonic appreciation for agreeable odors and further showed that smelling these odorants decreased beta event-related synchronization in aged participants. In conclusion, the study offers new insights into the evolution of odor hedonic perception during normal aging, highlighting for the first time a change in processing pleasant odors.
doi:10.1371/journal.pone.0061376
PMCID: PMC3634785  PMID: 23637821
21.  Spatiotemporal Alterations in Primary Odorant Representations in Olfactory Marker Protein Knockout Mice 
PLoS ONE  2013;8(4):e61431.
Olfactory marker protein (OMP) is highly and selectively expressed in primary olfactory sensory neurons (OSNs) across species, but its physiological function remains unclear. Previous studies in the olfactory epithelium suggest that it accelerates the neural response to odorants and may modulate the odorant-selectivity of OSNs. Here we used a line of gene-targeted mice that express the fluorescent exocytosis indicator synaptopHluorin in place of OMP to compare spatiotemporal patterns of odorant-evoked neurotransmitter release from OSNs in adult mice that were heterozygous for OMP or OMP-null. We found that these patterns, which constitute the primary neural representation of each odorant, developed more slowly during the odorant presentation in OMP knockout mice but eventually reached the same magnitude as in heterozygous mice. In the olfactory bulb, each glomerulus receives synaptic input from a subpopulation of OSNs that all express the same odor receptor and thus typically respond to a specific subset of odorants. We observed that in OMP knockout mice, OSNs innervating a given glomerulus typically responded to a broader range of odorants than in OMP heterozygous mice and thus each odorant evoked synaptic input to a larger number of glomeruli. In an olfactory habituation task, OMP knockout mice behaved differently than wild-type mice, exhibiting a delay in their onset to investigate an odor stimulus during its first presentation and less habituation to that stimulus over repeated presentations. These results suggest that the actions of OMP in olfactory transduction carry through to the primary sensory representations of olfactory stimuli in adult mice in vivo.
doi:10.1371/journal.pone.0061431
PMCID: PMC3632605  PMID: 23630588
22.  Olfactory Training in Patients with Parkinson's Disease 
PLoS ONE  2013;8(4):e61680.
Objective
Decrease of olfactory function in Parkinson's disease (PD) is a well-investigated fact. Studies indicate that pharmacological treatment of PD fails to restore olfactory function in PD patients. The aim of this investigation was whether patients with PD would benefit from “training” with odors in terms of an improvement of their general olfactory function. It has been hypothesized that olfactory training should produce both an improved sensitivity towards the odors used in the training process and an overall increase of olfactory function.
Methods
We recruited 70 subjects with PD and olfactory loss into this single-center, prospective, controlled non-blinded study. Thirty-five patients were assigned to the olfactory training group and 35 subjects to the control group (no training). Olfactory training was performed over a period of 12 weeks while patients exposed themselves twice daily to four odors (phenyl ethyl alcohol: rose, eucalyptol: eucalyptus, citronellal: lemon, and eugenol: cloves). Olfactory testing was performed before and after training using the “Sniffin' Sticks” (thresholds for phenyl ethyl alcohol, tests for odor discrimination, and odor identification) in addition to threshold tests for the odors used in the training process.
Results
Compared to baseline, trained PD patients experienced a significant increase in their olfactory function, which was observed for the Sniffin' Sticks test score and for thresholds for the odors used in the training process. Olfactory function was unchanged in PD patients who did not perform olfactory training.
Conclusion
The present results indicate that olfactory training may increase olfactory sensitivity in PD patients.
doi:10.1371/journal.pone.0061680
PMCID: PMC3629137  PMID: 23613901
23.  Potential Role of Transient Receptor Potential Channel M5 in Sensing Putative Pheromones in Mouse Olfactory Sensory Neurons 
PLoS ONE  2013;8(4):e61990.
Based on pharmacological studies of chemosensory transduction in transient receptor potential channel M5 (TRPM5) knockout mice it was hypothesized that this channel is involved in transduction for a subset of putative pheromones in mouse olfactory sensory neurons (OSNs). Yet, in the same study an electroolfactogram (EOG) in the mouse olfactory epithelium showed no significant difference in the responses to pheromones (and odors) between wild type and TRPM5 knockout mice. Here we show that the number of OSNs expressing TRPM5 is increased by unilateral naris occlusion. Importantly, EOG experiments show that mice lacking TRPM5 show a decreased response in the occluded epithelia to putative pheromones as opposed to wild type mice that show no change upon unilateral naris occlusion. This evidence indicates that under decreased olfactory sensory input TRPM5 plays a role in mediating putative pheromone transduction. Furthermore, we demonstrate that cyclic nucleotide gated channel A2 knockout (CNGA2-KO) mice that show substantially decreased or absent responses to odors and pheromones also have elevated levels of TRPM5 compared to wild type mice. Taken together, our evidence suggests that TRPM5 plays a role in mediating transduction for putative pheromones under conditions of reduced chemosensory input.
doi:10.1371/journal.pone.0061990
PMCID: PMC3628705  PMID: 23613997
24.  Ionotropic Crustacean Olfactory Receptors 
PLoS ONE  2013;8(4):e60551.
The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs), the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs), as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling.
doi:10.1371/journal.pone.0060551
PMCID: PMC3615998  PMID: 23573266
25.  Odorant Metabolism Catalyzed by Olfactory Mucosal Enzymes Influences Peripheral Olfactory Responses in Rats 
PLoS ONE  2013;8(3):e59547.
A large set of xenobiotic-metabolizing enzymes (XMEs), such as the cytochrome P450 monooxygenases (CYPs), esterases and transferases, are highly expressed in mammalian olfactory mucosa (OM). These enzymes are known to catalyze the biotransformation of exogenous compounds to facilitate elimination. However, the functions of these enzymes in the olfactory epithelium are not clearly understood. In addition to protecting against inhaled toxic compounds, these enzymes could also metabolize odorant molecules, and thus modify their stimulating properties or inactivate them. In the present study, we investigated the in vitro biotransformation of odorant molecules in the rat OM and assessed the impact of this metabolism on peripheral olfactory responses. Rat OM was found to efficiently metabolize quinoline, coumarin and isoamyl acetate. Quinoline and coumarin are metabolized by CYPs whereas isoamyl acetate is hydrolyzed by carboxylesterases. Electro-olfactogram (EOG) recordings revealed that the hydroxylated metabolites derived from these odorants elicited lower olfactory response amplitudes than the parent molecules. We also observed that glucurono-conjugated derivatives induced no olfactory signal. Furthermore, we demonstrated that the local application of a CYP inhibitor on rat olfactory epithelium increased EOG responses elicited by quinoline and coumarin. Similarly, the application of a carboxylesterase inhibitor increased the EOG response elicited by isoamyl acetate. This increase in EOG amplitude provoked by XME inhibitors is likely due to enhanced olfactory sensory neuron activation in response to odorant accumulation. Taken together, these findings strongly suggest that biotransformation of odorant molecules by enzymes localized to the olfactory mucosa may change the odorant’s stimulating properties and may facilitate the clearance of odorants to avoid receptor saturation.
doi:10.1371/journal.pone.0059547
PMCID: PMC3608737  PMID: 23555703

Results 1-25 (107)