PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Caspase Inhibition in Select Olfactory Neurons Restores Innate Attraction Behavior in Aged Drosophila 
PLoS Genetics  2014;10(6):e1004437.
Sensory and cognitive performance decline with age. Neural dysfunction caused by nerve death in senile dementia and neurodegenerative disease has been intensively studied; however, functional changes in neural circuits during the normal aging process are not well understood. Caspases are key regulators of cell death, a hallmark of age-related neurodegeneration. Using a genetic probe for caspase-3-like activity (DEVDase activity), we have mapped age-dependent neuronal changes in the adult brain throughout the lifespan of Drosophila. Spatio-temporally restricted caspase activation was observed in the antennal lobe and ellipsoid body, brain structures required for olfaction and visual place memory, respectively. We also found that caspase was activated in an age-dependent manner in specific subsets of Drosophila olfactory receptor neurons (ORNs), Or42b and Or92a neurons. These neurons are essential for mediating innate attraction to food-related odors. Furthermore, age-induced impairments of neural transmission and attraction behavior could be reversed by specific inhibition of caspase in these ORNs, indicating that caspase activation in Or42b and Or92a neurons is responsible for altering animal behavior during normal aging.
Author Summary
The approaching era of an “aging society” is receiving considerable attention amongst biomedical researchers in advanced nations. In order to understand the molecular mechanisms underlying age-related alterations of neural circuitry, we focused on caspase-3, a cysteine protease that induces apoptotic cell death, using the fruit fly Drosophila melanogaster, a model often used to study aging due to a short lifespan of approximately 30–60 days. Here, we describe the spatiotemporal activation of caspase-3 in aged fly brains and show that caspase-3 is specifically activated in select olfactory neurons essential for innate odor attraction behavior. Furthermore, we discuss how inhibition of caspase-3 activation in those select olfactory neurons can rejuvenate the sensitivity of innate attraction behavior in aged flies. These findings suggest that caspase-3 plays an active role in producing age-related alterations to neuronal physiology and circuit function associated with animal behavior.
doi:10.1371/journal.pgen.1004437
PMCID: PMC4072539  PMID: 24967585
2.  A Presynaptic Gain Control Mechanism Fine-Tunes Olfactory Behavior 
Neuron  2008;59(2):311-321.
Early sensory processing can play a critical role in sensing environmental cues. We have investigated the physiological and behavioral function of gain control at the first synapse of olfactory processing in Drosophila. We report that olfactory receptor neurons (ORNs) express the GABAB receptor (GABABR) and its expression expands the dynamic range of ORN synaptic transmission that is preserved in projection neuron responses. Strikingly, we find that different ORN channels have unique baseline levels of GABABR expression. ORNs that sense the aversive odorant CO2 do not express GABABRs nor exhibit any presynaptic inhibition. In contrast, pheromone-sensing ORNs express a high level of GABABRs and exhibit strong presynaptic inhibition. Furthermore, a behavioral significance of presynaptic inhibition was revealed by a courtship behavior in which pheromone-dependent mate localization is impaired in flies that lack GABABRs in specific ORNs. Together, these findings indicate that different olfactory receptor channels may employ heterogeneous presynaptic gain control as a mechanism to allow an animal’s innate behavioral responses to match its ecological needs.
doi:10.1016/j.neuron.2008.07.003
PMCID: PMC2539065  PMID: 18667158
Drosophila; olfaction; GABAB; presynaptic inhibition; gain control; dynamic range; two-photon imaging
3.  Mapping Neural Circuits with Activity-Dependent Nuclear Import of a Transcription Factor 
Journal of Neurogenetics  2012;26(1):89-102.
Nuclear factor of activated T cells (NFAT) is a calcium-responsive transcription factor. We describe here an NFAT-based neural tracing method—CaLexA (calcium-dependent nuclear import of Lex A)—for labeling active neurons in behaving animals. In this system, sustained neural activity induces nuclear import of the chimeric transcription factor LexA-VP16-NFAT, which in turn drives green fluorescent protein (GFP) reporter expression only in active neurons. We tested this system in Drosophila and found that volatile sex pheromones excite specific neurons in the olfactory circuit. Furthermore, complex courtship behavior associated with multi-modal sensory inputs activated neurons in the ventral nerve cord. This method harnessing the mechanism of activity-dependent nuclear import of a transcription factor can be used to identify active neurons in specific neuronal population in behaving animals.
doi:10.3109/01677063.2011.642910
PMCID: PMC3357894  PMID: 22236090
Drosophila; olfaction; antennal lobe; pheromone; NFAT; activity dependent; N2A; immediate-early gene

Results 1-3 (3)