Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Phase synchronization of delta and theta oscillations increase during the detection of relevant lexical information 
During monitoring of the discourse, the detection of the relevance of incoming lexical information could be critical for its incorporation to update mental representations in memory. Because, in these situations, the relevance for lexical information is defined by abstract rules that are maintained in memory, a central aspect to elucidate is how an abstract level of knowledge maintained in mind mediates the detection of the lower-level semantic information. In the present study, we propose that neuronal oscillations participate in the detection of relevant lexical information, based on “kept in mind” rules deriving from more abstract semantic information. We tested our hypothesis using an experimental paradigm that restricted the detection of relevance to inferences based on explicit information, thus controlling for ambiguities derived from implicit aspects. We used a categorization task, in which the semantic relevance was previously defined based on the congruency between a kept in mind category (abstract knowledge), and the lexical semantic information presented. Our results show that during the detection of the relevant lexical information, phase synchronization of neuronal oscillations selectively increases in delta and theta frequency bands during the interval of semantic analysis. These increments occurred irrespective of the semantic category maintained in memory, had a temporal profile specific for each subject, and were mainly induced, as they had no effect on the evoked mean global field power. Also, recruitment of an increased number of pairs of electrodes was a robust observation during the detection of semantic contingent words. These results are consistent with the notion that the detection of relevant lexical information based on a particular semantic rule, could be mediated by increasing the global phase synchronization of neuronal oscillations, which may contribute to the recruitment of an extended number of cortical regions.
PMCID: PMC3684765  PMID: 23785341
language; semantic analysis; relevance; oscillations; phase synchronization; theta; delta; gamma
2.  Small Saccades and Image Complexity during Free Viewing of Natural Images in Schizophrenia 
In schizophrenia, patients display dysfunctions during the execution of simple visual tasks such as antisaccade or smooth pursuit. In more ecological scenarios, such as free viewing of natural images, patients appear to make fewer and longer visual fixations and display shorter scanpaths. It is not clear whether these measurements reflect alterations in their proficiency to perform basic eye movements, such as saccades and fixations, or are related to high-level mechanisms, such as exploration or attention. We utilized free exploration of natural images of different complexities as a model of an ecological context where normally operative mechanisms of visual control can be accurately measured. We quantified visual exploration as Euclidean distance, scanpaths, saccades, and visual fixation, using the standard SR-Research eye tracker algorithm (SR). We then compared this result with a computation that includes microsaccades (EM). We evaluated eight schizophrenia patients and corresponding healthy controls (HC). Next, we tested whether the decrement in the number of saccades and fixations, as well as their increment in duration reported previously in schizophrenia patients, resulted from the increasing occurrence of undetected microsaccades. We found that when utilizing the standard SR algorithm, patients displayed shorter scanpaths as well as fewer and shorter saccades and fixations. When we employed the EM algorithm, the differences in these parameters between patients and HC were no longer significant. On the other hand, we found that image complexity plays an important role in exploratory behaviors, demonstrating that this factor explains most of differences between eye-movement behaviors in schizophrenia patients. These results help elucidate the mechanisms of visual motor control that are affected in schizophrenia and contribute to the finding of adequate markers for diagnosis and treatment for this condition.
PMCID: PMC3657715  PMID: 23730291
microsaccades; saccades; free viewing; natural images; schizophrenia
3.  Cross-frequency interaction of the eye-movement related LFP signals in V1 of freely viewing monkeys 
Recent studies have emphasized the functional role of neuronal activity underlying oscillatory local field potential (LFP) signals during visual processing in natural conditions. While functionally relevant components in multiple frequency bands have been reported, little is known about whether and how these components interact with each other across the dominant frequency bands. We examined this phenomenon in LFP signals obtained from the primary visual cortex of monkeys performing voluntary saccadic eye movements (EMs) on still images of natural-scenes. We identified saccade-related changes in respect to power and phase in four dominant frequency bands: delta-theta (2–4 Hz), alpha-beta (10–13 Hz), low-gamma (20–40 Hz), and high-gamma (>100 Hz). The phase of the delta-theta band component is found to be entrained to the rhythm of the repetitive saccades, while an increment in the power of the alpha-beta and low-gamma bands were locked to the onset of saccades. The degree of the power modulation in these frequency bands is positively correlated with the degree of the phase-locking of the delta-theta oscillations to EMs. These results suggest the presence of cross-frequency interactions in the form of phase-amplitude coupling (PAC) between slow (delta-theta) and faster (alpha-beta and low gamma) oscillations. As shown previously, spikes evoked by visual fixations during free viewing are phase-locked to the fast oscillations. Thus, signals of different types and at different temporal scales are nested to each other during natural viewing. Such cross-frequency interaction may provide a general mechanism to coordinate sensory processing on a fast time scale and motor behavior on a slower time scale during active sensing.
PMCID: PMC3572441  PMID: 23420631
local field potential; oscillation; saccade; natural vision; cross-frequency coupling
5.  Saccade-Related Modulations of Neuronal Excitability Support Synchrony of Visually Elicited Spikes 
Cerebral Cortex (New York, NY)  2011;21(11):2482-2497.
During natural vision, primates perform frequent saccadic eye movements, allowing only a narrow time window for processing the visual information at each location. Individual neurons may contribute only with a few spikes to the visual processing during each fixation, suggesting precise spike timing as a relevant mechanism for information processing. We recently found in V1 of monkeys freely viewing natural images, that fixation-related spike synchronization occurs at the early phase of the rate response after fixation-onset, suggesting a specific role of the first response spikes in V1. Here, we show that there are strong local field potential (LFP) modulations locked to the onset of saccades, which continue into the successive fixation periods. Visually induced spikes, in particular the first spikes after the onset of a fixation, are locked to a specific epoch of the LFP modulation. We suggest that the modulation of neural excitability, which is reflected by the saccade-related LFP changes, serves as a corollary signal enabling precise timing of spikes in V1 and thereby providing a mechanism for spike synchronization.
PMCID: PMC3183421  PMID: 21459839
free viewing; local field potential; phase locking; primary visual cortex; spike synchrony

Results 1-5 (5)