PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Motion Integration by Neurons in Macaque MT Is Local, Not Global 
Direction-selective neurons in primary visual cortex have small receptive fields that encode the motions of local features. These motions often differ from the motion of the object to which they belong and must therefore be integrated elsewhere. A candidate site for this integration is visual cortical area MT (V5), in which cells with large receptive fields compute the motion of patterns. Previous studies of motion integration in MT have used stimuli that fill the receptive field, and thus do not test whether motion information is really integrated across this whole area. For each MT neuron, we identified two regions (“patches”) within the receptive field that were approximately equally effective in driving responses. We then measured responses to plaids whose component gratings overlapped within a patch, and compared them with responses to the same component gratings presented in separate patches. Cells that were selective for the direction of motion of the whole pattern when the gratings overlapped lost this selectivity when the gratings were separated and became selective instead for the direction of motion of the individual components. If MT cells simply pooled all of the inputs that endow them with a receptive field, they would encode all of the motions in the receptive field as belonging to a single object. Our results indicate instead that critical elements of the computations underlying pattern-direction selectivity in MT are done locally, on a scale smaller than the whole receptive field.
doi:10.1523/JNEUROSCI.3183-06.2007
PMCID: PMC3039841  PMID: 17215397
vision; visual motion; extrastriate; MT; V5; pattern; component
2.  Binocular integration of pattern motion signals by MT neurons and by human observers 
Analysis of the movement of a complex visual stimulus is expressed in the responses of pattern-direction selective neurons in area MT, which depend in turn on directionally selective inputs from area V1. How do MT neurons integrate their inputs? Pattern selectivity in MT breaks down when the gratings comprising a moving plaid are presented to non-overlapping regions of the (monocular) receptive field. Here we ask an analogous question, is pattern selectivity maintained when the component gratings are presented dichoptically to binocular MT neurons? We recorded from single units in area MT, measuring responses to monocular gratings and plaids, and to dichoptic plaids in which the components are presented separately to each eye. Neurons that are pattern selective when tested monocularly lose this selectivity when stimulated with dichoptic plaids. When human observers view these same stimuli, dichoptic plaids induce binocular rivalry. Yet motion signals from each eye can be integrated despite rivalry, revealing a dissociation of form and motion perception. These results reveal the role of monocular mechanisms in the computation of pattern motion in single neurons, and demonstrate that the perception of motion is not fully represented by the responses of individual MT neurons.
doi:10.1523/JNEUROSCI.4552-09.2010
PMCID: PMC2893719  PMID: 20505101
MT; V5; extrastriate cortex; visual motion; direction selectivity; binocular interaction
3.  Grouping in object recognition: The role of a Gestalt law in letter identification 
Cognitive Neuropsychology  2009;26(1):36-49.
The Gestalt psychologists reported a set of laws describing how vision groups elements to recognize objects. The Gestalt laws “prescribe for us what we are to recognize ‘as one thing’” (Köhler, 1920). Were they right? Does object recognition involve grouping? Tests of the laws of grouping have been favourable, but mostly assessed only detection, not identification, of the compound object. The grouping of elements seen in the detection experiments with lattices and “snakes in the grass” is compelling, but falls far short of the vivid everyday experience of recognizing a familiar, meaningful, named thing, which mediates the ordinary identification of an object. Thus, after nearly a century, there is hardly any evidence that grouping plays a role in ordinary object recognition. To assess grouping in object recognition, we made letters out of grating patches and measured threshold contrast for identifying these letters in visual noise as a function of perturbation of grating orientation, phase, and offset. We define a new measure, “wiggle”, to characterize the degree to which these various perturbations violate the Gestalt law of good continuation. We find that efficiency for letter identification is inversely proportional to wiggle and is wholly determined by wiggle, independent of how the wiggle was produced. Thus the effects of three different kinds of shape perturbation on letter identifiability are predicted by a single measure of goodness of continuation. This shows that letter identification obeys the Gestalt law of good continuation and may be the first confirmation of the original Gestalt claim that object recognition involves grouping.
doi:10.1080/13546800802550134
PMCID: PMC2679997  PMID: 19424881
Gestalt; Grouping; Contour integration; Good continuation; Letter identification; Object recognition; Features; Snake in the grass; Snake letters; Dot lattice
4.  Grouping in object recognition: The role of a Gestalt law in letter identification 
Cognitive neuropsychology  2009;26(1):36-49.
The Gestalt psychologists reported a set of laws describing how vision groups elements to recognize objects. The Gestalt laws “prescribe for us what we are to recognize ‘as one thing’.” (Köhler, 1920). Were they right? Does object recognition involve grouping? Tests of the laws of grouping have been favorable, but mostly assessed only detection, not identification, of the compound object. The grouping of elements seen in the detection experiments with lattices and ‘snakes in the grass’ is compelling, but falls far short of the vivid everyday experience of recognizing a familiar, meaningful, named thing, which mediates the ordinary identification of an object. Thus, after nearly a century, there is hardly any evidence that grouping plays a role in ordinary object recognition. To assess grouping in object recognition, we made letters out of grating patches and measured threshold contrast for identifying these letters in visual noise as a function of perturbation of grating orientation, phase, and offset. We define a new measure, “wiggle,” to characterize the degree to which these various perturbations violate the Gestalt law of good continuation. We find that efficiency for letter identification is inversely proportional to wiggle, and is wholly determined by wiggle, independent of how the wiggle was produced. Thus the effects of three different kinds of shape perturbation on letter identifiability are predicted by a single measure of goodness of continuation. This shows that letter identification obeys the Gestalt law of good continuation, and may be the first confirmation of the original Gestalt claim that object recognition involves grouping.
doi:10.1080/13546800802550134
PMCID: PMC2679997  PMID: 19424881
Gestalt; grouping; contour integration; good continuation; letter identification; object recognition; features; snake in the grass; snake letters; dot lattice

Results 1-4 (4)