PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Meningococcal serogroup B vaccines: will they live up to expectations? 
Expert review of vaccines  2011;10(5):559-561.
doi:10.1586/erv.11.41
PMCID: PMC3985070  PMID: 21604975
antigenic variation; factor H-binding protein; fHbp; MenB; OMV; outer membrane vesicle; PorA; Porin A
2.  Widespread acquisition of antimicrobial resistance among Campylobacter isolates from UK retail poultry and evidence for clonal expansion of resistant lineages 
BMC Microbiology  2013;13:160.
Background
Antimicrobial resistance is increasing among clinical Campylobacter cases and is common among isolates from other sources, specifically retail poultry - a major source of human infection. In this study the antimicrobial susceptibility of isolates from a UK-wide survey of Campylobacter in retail poultry in 2001 and 2004–5 was investigated. The occurrence of phenotypes resistant to tetracycline, quinolones (ciprofloxacin and naladixic acid), erythromycin, chloramphenicol and aminoglycosides was quantified. This was compared with a phylogeny for these isolates based upon Multi Locus Sequence Typing (MLST) to investigate the pattern of antimicrobial resistance acquisition.
Results
Antimicrobial resistance was present in all lineage clusters, but statistical testing showed a non-random distribution. Erythromycin resistance was associated with Campylobacter coli. For all antimicrobials tested, resistant isolates were distributed among relatively distant lineages indicative of widespread acquisition. There was also evidence of clustering of resistance phenotypes within lineages; indicative of local expansion of resistant strains.
Conclusions
These results are consistent with the widespread acquisition of antimicrobial resistance among chicken associated Campylobacter isolates, either through mutation or horizontal gene transfer, and the expansion of these lineages as a proportion of the population. As Campylobacter are not known to multiply outside of the host and long-term carriage in humans is extremely infrequent in industrialized countries, the most likely location for the proliferation of resistant lineages is in farmed chickens.
doi:10.1186/1471-2180-13-160
PMCID: PMC3717071  PMID: 23855904
3.  BIGSdb: Scalable analysis of bacterial genome variation at the population level 
BMC Bioinformatics  2010;11:595.
Background
The opportunities for bacterial population genomics that are being realised by the application of parallel nucleotide sequencing require novel bioinformatics platforms. These must be capable of the storage, retrieval, and analysis of linked phenotypic and genotypic information in an accessible, scalable and computationally efficient manner.
Results
The Bacterial Isolate Genome Sequence Database (BIGSDB) is a scalable, open source, web-accessible database system that meets these needs, enabling phenotype and sequence data, which can range from a single sequence read to whole genome data, to be efficiently linked for a limitless number of bacterial specimens. The system builds on the widely used mlstdbNet software, developed for the storage and distribution of multilocus sequence typing (MLST) data, and incorporates the capacity to define and identify any number of loci and genetic variants at those loci within the stored nucleotide sequences. These loci can be further organised into 'schemes' for isolate characterisation or for evolutionary or functional analyses. Isolates and loci can be indexed by multiple names and any number of alternative schemes can be accommodated, enabling cross-referencing of different studies and approaches. LIMS functionality of the software enables linkage to and organisation of laboratory samples. The data are easily linked to external databases and fine-grained authentication of access permits multiple users to participate in community annotation by setting up or contributing to different schemes within the database. Some of the applications of BIGSDB are illustrated with the genera Neisseria and Streptococcus.
The BIGSDB source code and documentation are available at http://pubmlst.org/software/database/bigsdb/.
Conclusions
Genomic data can be used to characterise bacterial isolates in many different ways but it can also be efficiently exploited for evolutionary or functional studies. BIGSDB represents a freely available resource that will assist the broader community in the elucidation of the structure and function of bacteria by means of a population genomics approach.
doi:10.1186/1471-2105-11-595
PMCID: PMC3004885  PMID: 21143983
4.  Independent evolution of the core and accessory gene sets in the genus Neisseria: insights gained from the genome of Neisseria lactamica isolate 020-06 
BMC Genomics  2010;11:652.
Background
The genus Neisseria contains two important yet very different pathogens, N. meningitidis and N. gonorrhoeae, in addition to non-pathogenic species, of which N. lactamica is the best characterized. Genomic comparisons of these three bacteria will provide insights into the mechanisms and evolution of pathogenesis in this group of organisms, which are applicable to understanding these processes more generally.
Results
Non-pathogenic N. lactamica exhibits very similar population structure and levels of diversity to the meningococcus, whilst gonococci are essentially recent descendents of a single clone. All three species share a common core gene set estimated to comprise around 1190 CDSs, corresponding to about 60% of the genome. However, some of the nucleotide sequence diversity within this core genome is particular to each group, indicating that cross-species recombination is rare in this shared core gene set. Other than the meningococcal cps region, which encodes the polysaccharide capsule, relatively few members of the large accessory gene pool are exclusive to one species group, and cross-species recombination within this accessory genome is frequent.
Conclusion
The three Neisseria species groups represent coherent biological and genetic groupings which appear to be maintained by low rates of inter-species horizontal genetic exchange within the core genome. There is extensive evidence for exchange among positively selected genes and the accessory genome and some evidence of hitch-hiking of housekeeping genes with other loci. It is not possible to define a 'pathogenome' for this group of organisms and the disease causing phenotypes are therefore likely to be complex, polygenic, and different among the various disease-associated phenotypes observed.
doi:10.1186/1471-2164-11-652
PMCID: PMC3091772  PMID: 21092259
5.  Population genomics: diversity and virulence in the Neisseria 
Current Opinion in Microbiology  2008;11(5):467-471.
Advances in high-throughput nucleotide sequencing and bioinformatics make the study of genomes at the population level feasible. Preliminary population genomic studies have explored the relationships among three closely related bacteria, Neisseria meningitidis, Neisseria gonorrhoeae and Neisseria lactamica, which exhibit very different phenotypes with respect to human colonisation. The data obtained have been especially valuable in the establishing of the role of horizontal genetic exchange in bacterial speciation and shaping population structure. In the meningococcus, they have been used to define invasive genetic types, search for virulence factors and potential vaccine components and investigate the effects of vaccines on population structure. These are generic approaches and their application to the Neisseria provides a foretaste for their application to the wider bacterial world.
doi:10.1016/j.mib.2008.09.002
PMCID: PMC2612085  PMID: 18822386
6.  Distribution of transferrin binding protein B gene (tbpB) variants among Neisseria species 
BMC Microbiology  2008;8:66.
Background
Transferrin binding protein B (tbpB), an outer membrane lipoprotein, is required for the acquisition of iron from human transferrin. Two tbpB families have been documented in Neisseria meningitidis: an isotype I tbpB gene of 1.8 kb and an isotype II tbpB gene of 2.1 kb, the former expressed by meningococci in the disease-associated ST-11 clonal complex and the latter found among meningococci belonging to the hyper-invasive clonal complexes including ST-8, ST-18, ST-32, ST-41/44 as well as N. gonorrhoeae isolates. The origin of the isotype I tbpB gene is unknown, however several features in common with non-pathogenic Neisseria and the ST-11 clonal complex N. meningitidis isolate FAM18 have been documented leading to the hypothesis that the isotype I tbpB gene may also be shared between non-pathogenic Neisseria and ST-11 meningococci. As a result, the diversity of the tbpB gene was investigated in a defined collection of Neisseria species.
Results
Two families of isotype I tbpB were identified: family A containing conserved genes belonging to ST-11 meningococci, N. polysaccharea and N. lactamica isolates and family B including more diverse isotype I tbpB genes from N. sicca, N. mucosa, N. flava, N. subflava as well as N. cinerea, N. flavescens and N. polysaccharea isolates. Three isotype II tbpB families were identified with: family C containing diverse tbpB genes belonging to N. polysaccharea, N. lactamica, N. gonorrhoeae and N. meningitidis isolates, family D including another subset of isotype II tbpB genes from N. lactamica isolates and family E solely composed of N. gonorrhoeae tbpB genes.
Conclusion
This study reveals another instance of similarity between meningococci of the ST-11 clonal complex and non-pathogenic Neisseria with the origin of the isotype I tbpB gene resulting from a horizontal genetic transfer event occurring between these two populations.
doi:10.1186/1471-2180-8-66
PMCID: PMC2386816  PMID: 18430216
7.  Species status of Neisseria gonorrhoeae: evolutionary and epidemiological inferences from multilocus sequence typing 
BMC Biology  2007;5:35.
Background
Various typing methods have been developed for Neisseria gonorrhoeae, but none provide the combination of discrimination, reproducibility, portability, and genetic inference that allows the analysis of all aspects of the epidemiology of this pathogen from a single data set. Multilocus sequence typing (MLST) has been used successfully to characterize the related organisms Neisseria meningitidis and Neisseria lactamica. Here, the same seven locus Neisseria scheme was used to characterize a diverse collection of N. gonorrhoeae isolates to investigate whether this method would allow differentiation among isolates, and to distinguish these three species.
Results
A total of 149 gonococcal isolates were typed and submitted to the Neisseria MLST database. Although relatively few (27) polymorphisms were detected among the seven MLST loci, a total of 66 unique allele combinations (sequence types, STs), were observed, a number comparable to that seen among isolate collections of the more diverse meningococcus. Patterns of genetic variation were consistent with high levels of recombination generating this diversity. There was no evidence for geographical structuring among the isolates examined, with isolates collected in Liverpool, UK, showing levels of diversity similar to a global collection of isolates. There was, however, evidence that populations of N. meningitidis, N. gonorrhoeae and N. lactamica were distinct, with little support for frequent genetic recombination among these species, with the sequences from the gdh locus alone grouping the species into distinct clusters.
Conclusion
The seven loci Neisseria MLST scheme was readily adapted to N. gonorrhoeae isolates, providing a highly discriminatory typing method. In addition, these data permitted phylogenetic and population genetic inferences to be made, including direct comparisons with N. meningitidis and N. lactamica. Examination of these data demonstrated that alleles were rarely shared among the three species. Analysis of variation at a single locus, gdh, provided a rapid means of identifying misclassified isolates and determining whether mixed cultures were present.
doi:10.1186/1741-7007-5-35
PMCID: PMC2031879  PMID: 17825091
8.  AgdbNet – antigen sequence database software for bacterial typing 
BMC Bioinformatics  2006;7:314.
Background
Bacterial typing schemes based on the sequences of genes encoding surface antigens require databases that provide a uniform, curated, and widely accepted nomenclature of the variants identified. Due to the differences in typing schemes, imposed by the diversity of genes targeted, creating these databases has typically required the writing of one-off code to link the database to a web interface. Here we describe agdbNet, widely applicable web database software that facilitates simultaneous BLAST querying of multiple loci using either nucleotide or peptide sequences.
Results
Databases are described by XML files that are parsed by a Perl CGI script. Each database can have any number of loci, which may be defined by nucleotide and/or peptide sequences. The software is currently in use on at least five public databases for the typing of Neisseria meningitidis, Campylobacter jejuni and Streptococcus equi and can be set up to query internal isolate tables or suitably-configured external isolate databases, such as those used for multilocus sequence typing. The style of the resulting website can be fully configured by modifying stylesheets and through the use of customised header and footer files that surround the output of the script.
Conclusion
The software provides a rapid means of setting up customised Internet antigen sequence databases. The flexible configuration options enable typing schemes with differing requirements to be accommodated.
doi:10.1186/1471-2105-7-314
PMCID: PMC1543660  PMID: 16790057
9.  Sex and virulence in Escherichia coli: an evolutionary perspective 
Molecular Microbiology  2006;60(5):1136-1151.
Pathogenic Escherichia coli cause over 160 million cases of dysentery and one million deaths per year, whereas non-pathogenic E. coli constitute part of the normal intestinal flora of healthy mammals and birds. The evolutionary pathways underlying this dichotomy in bacterial lifestyle were investigated by multilocus sequence typing of a global collection of isolates. Specific pathogen types [enterohaemorrhagic E. coli, enteropathogenic E. coli, enteroinvasive E. coli, K1 and Shigella] have arisen independently and repeatedly in several lineages, whereas other lineages contain only few pathogens. Rates of evolution have accelerated in pathogenic lineages, culminating in highly virulent organisms whose genomic contents are altered frequently by increased rates of homologous recombination; thus, the evolution of virulence is linked to bacterial sex. This long-term pattern of evolution was observed in genes distributed throughout the genome, and thereby is the likely result of episodic selection for strains that can escape the host immune response.
doi:10.1111/j.1365-2958.2006.05172.x
PMCID: PMC1557465  PMID: 16689791
10.  Dam inactivation in Neisseria meningitidis: prevalence among diverse hyperinvasive lineages 
BMC Microbiology  2004;4:34.
Background
DNA adenine methyltransferase (Dam) activity is absent in many, but not all, disease isolates of Neisseria meningitidis, as a consequence of the insertion of a restriction endonuclease-encoding gene, the 'dam replacing gene' (drg) at the dam locus. Here, we report the results of a survey to assess the prevalence of drg in a globally representative panel of disease-associated meningococci.
Results
Of the known meningococcal hyper-invasive lineages investigated, drg was absent in all representatives of the ST-8 and ST-11 clonal complexes tested, but uniformly present in the representatives of the other hyper-invasive lineages present in the isolate collection (the ST-1, ST-4, ST-5, ST-32 and ST-41/44 clonal complexes). The patterns of sequence diversity observed in drg were consistent with acquisition of this gene from a source organism with a different G+C content, at some time prior to the emergence of present-day meningococcal clonal complexes, followed by spread through the meningococcal population by horizontal genetic exchange. During this spread a number of alleles have arisen by mutation and intragenic recombination.
Conclusion
These findings are consistent with the idea that possession of the drg gene may contribute to the divergence observed among meningococcal clonal complexes, but does not have a direct mechanistic involvement in virulence.
doi:10.1186/1471-2180-4-34
PMCID: PMC516771  PMID: 15339342
11.  mlstdbNet – distributed multi-locus sequence typing (MLST) databases 
BMC Bioinformatics  2004;5:86.
Background
Multi-locus sequence typing (MLST) is a method of typing that facilitates the discrimination of microbial isolates by comparing the sequences of housekeeping gene fragments. The mlstdbNet software enables the implementation of distributed web-accessible MLST databases that can be linked widely over the Internet.
Results
The software enables multiple isolate databases to query a single profiles database that contains allelic profile and sequence definitions. This separation enables isolate databases to be established by individual laboratories, each customised to the needs of the particular project and with appropriate access restrictions, while maintaining the benefits of a single definitive source of profile and sequence information. Databases are described by an XML file that is parsed by a Perl CGI script. The software offers a large number of ways to query the databases and to further break down and export the results generated. Additional features can be enabled by installing third-party (freely available) tools.
Conclusion
Development of a distributed structure for MLST databases offers scalability and flexibility, allowing participating centres to maintain ownership of their own data, without introducing duplication and data integrity issues.
doi:10.1186/1471-2105-5-86
PMCID: PMC459212  PMID: 15230973

Results 1-11 (11)