Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Concomitant promoter methylation of multiple genes in lung adenocarcinomas from current, former and never smokers 
Carcinogenesis  2009;30(7):1132-1138.
Aberrant promoter hypermethylation is one of the major mechanisms in carcinogenesis and some critical growth regulatory genes have shown commonality in methylation across solid tumors. Twenty-six genes, 14 identified through methylation in colon and breast cancers, were evaluated using primary lung adenocarcinomas (n = 175) from current, former and never smokers. Tumor specificity of methylation was validated through comparison of 14 lung cancer cell lines to normal human bronchial epithelial cells derived from bronchoscopy of 20 cancer-free smokers. Twenty-five genes were methylated in 11–81% of primary tumors. Prevalence for methylation of TNFRSF10C, BHLHB5 and BOLL was significantly higher in adenocarcinomas from never smokers than smokers. The relation between methylation of individual genes was examined using pairwise comparisons. A significant association was seen between 138 (42%) of the possible 325 pairwise comparisons. Most notably, methylation of MMP2, BHLHB4 or p16 was significantly associated with methylation of 16–19 other genes, thus predicting for a widespread methylation phenotype. Kaplan–Meier log-rank test and proportional hazard models identified a significant association between methylation of SULF2 (a pro-growth, -angiogenesis and -migration gene) and better patient survival (hazard ratio = 0.23). These results demonstrate a high degree of commonality for targeted silencing of genes between lung and other solid tumors and suggest that promoter hypermethylation in cancer is a highly co-ordinated event.
PMCID: PMC2704285  PMID: 19435948
2.  Epigenetic alteration of Wnt pathway antagonists in progressive glandular neoplasia of the lung 
Carcinogenesis  2008;29(5):895-904.
Background: Atypical adenomatous hyperplasia (AAH) is now recognized as a precursor lesion from which lung adenocarcinomas arise and thus represents an ideal target for studying the early genetic and epigenetic alterations associated with lung tumorigenesis such as alterations of the Wnt pathway. Methods: We assessed the level of Wnt signaling activity in lung cancer cell lines by determining the level of active β-catenin and determined the level of expression of Wnt antagonists APC, DKK1, DKK3, LKB1, SFRP1, 2, 4, 5, WIF1 and RUNX3 using reverse transcription–polymerase chain reaction. Using multiplex nested methylation-specific polymerase chain reaction, we analyzed promoter region methylation of these genes in resected lung tissue in the histopathologic sequence of glandular neoplasia (normal lung parenchyma, low-grade and high-grade AAH, adenocarcinoma). Results: The majority of non-small cell lung cancer cell lines (11 of 16, 69%) have evidence of active Wnt signaling and silencing of Wnt antagonists correlated with promoter hypermethylation. Promoter region methylation of Wnt antagonists was common in primary lung adenocarcinoma and there was a significant increase in the frequency of methylation for Wnt antagonist genes and the number of genes methylated with each stage of tumorigenesis (test for rend P ≤ 0.01). Additionally, odds ratios for promoter hypermethylation of individual or multiple Wnt antagonist genes and adenocarcinomas were statistically significantly elevated and ranged between 3.64 and 48.17. Conclusion: These results show that gene silencing of Wnt antagonists by promoter hypermethylation occurs during the earliest stages of glandular neoplasia of the lung and accumulates with progression toward malignancy.
PMCID: PMC3312609  PMID: 18308762

Results 1-2 (2)