PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  A Novel Method for Genotyping the Helicobacter pylori vacA Intermediate Region Directly in Gastric Biopsy Specimens 
Journal of Clinical Microbiology  2012;50(12):3983-3989.
The present report describes a novel method for genotyping the virulence-associated vacA intermediate (i) region of Helicobacter pylori in archive material. vacA i-region genotypes as determined by the novel method were completely concordant with those of sequence analysis and with those of functional vacuolation activity. The method was further validated directly in gastric biopsy specimens of 386 H. pylori-positive cases, and effective characterization of the vacA i region was obtained in 191 of 192 (99.5%) frozen and in 186 of 194 (95.9%) formalin-fixed paraffin-embedded gastric biopsy specimens, respectively. The genotyping method was next used to address the relationship between the vacA genotypes and the cagA status. The vacA i1 genotype was associated with vacA s1 (where s indicates signal region), vacA m1 (where m indicates middle region), and cagA-positive genotypes (P < 0.0001), while the vacA i2 genotype was closely related with vacA s2, vacA m2, and cagA-negative genotypes (P < 0.0001). The relationship between H. pylori vacA i-region genotypes and gastric disease development was subsequently evaluated in the Portuguese population. Patients infected with vacA i1 strains showed an increased risk for gastric atrophy and for gastric carcinoma, with odds ratios of 8.0 (95% confidence interval [CI], 2.3 to 27) and of 22 (95% CI, 7.9 to 63), respectively. Taken together, the results show that this novel H. pylori vacA i-region genotyping method can be applied directly to archive material, providing a fast evaluation of strain virulence determinants without the need of culture. The results further emphasize that the characterization of the vacA i region may be useful to identify patients at higher risk of gastric carcinoma development.
doi:10.1128/JCM.02087-12
PMCID: PMC3502994  PMID: 23035185
2.  Docosahexaenoic Acid Inhibits Helicobacter pylori Growth In Vitro and Mice Gastric Mucosa Colonization 
PLoS ONE  2012;7(4):e35072.
H. pylori drug-resistant strains and non-compliance to therapy are the major causes of H. pylori eradication failure. For some bacterial species it has been demonstrated that fatty acids have a growth inhibitory effect. Our main aim was to assess the ability of docosahexaenoic acid (DHA) to inhibit H. pylori growth both in vitro and in a mouse model. The effectiveness of standard therapy (ST) in combination with DHA on H. pylori eradication and recurrence prevention success was also investigated. The effects of DHA on H. pylori growth were analyzed in an in vitro dose-response study and n in vivo model. We analized the ability of H. pylori to colonize mice gastric mucosa following DHA, ST or a combination of both treatments. Our data demonstrate that DHA decreases H. pylori growth in vitro in a dose-dependent manner. Furthermore, DHA inhibits H. pylori gastric colonization in vivo as well as decreases mouse gastric mucosa inflammation. Addition of DHA to ST was also associated with lower H. pylori infection recurrence in the mouse model. In conclusion, DHA is an inhibitor of H. pylori growth and its ability to colonize mouse stomach. DHA treatment is also associated with a lower recurrence of H. pylori infection in combination with ST. These observations pave the way to consider DHA as an adjunct agent in H. pylori eradication treatment.
doi:10.1371/journal.pone.0035072
PMCID: PMC3328494  PMID: 22529974

Results 1-2 (2)