PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (75)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Validation of a continuous infusion of low dose Iohexol to measure glomerular filtration rate: randomised clinical trial 
Introduction
There is currently no accurate method of measuring glomerular filtration rate (GFR) during acute kidney injury (AKI). Knowledge of how much GFR varies in stable subjects is necessary before changes in GFR can be attributed to AKI. We have designed a method of continuous measurement of GFR intended as a research tool to time effects of AKI. The aims of this crossover trial were to establish accuracy and precision of a continuous infusion of low dose Iohexol (CILDI) and variation in GFR in stable volunteers over a range of estimated GFR (23-138 mL/min/1.73 m2).
Methods
We randomised 17 volunteers to GFR measurement by plasma clearance (PC) and renal clearance (RC) of either a single bolus of Iohexol (SBI; routine method), or of a continuous infusion of low dose Iohexol (CILDI; experimental method) at 0.5 mL/h for 12 h. GFR was measured by the alternative method after a washout period (4–28 days). Iohexol concentration was measured by high performance liquid chromatography/electrospray tandem mass spectrometry and time to steady state concentration (Css) determined.
Results
Mean PC was 76.7 ± 28.5 mL/min/1.73 m2 (SBI), and 78.9 ± 28.6 mL/min/1.73 m2 (CILDI), p = 0.82. No crossover effects occurred (p = 0.85). Correlation (r) between the methods was 0.98 (p < 0.0001). Bias was 2.2 mL/min/1.73 m2 (limits of agreement −8.2 to 12.6 mL/min/1.73 m2) for CILDI. PC overestimated RC by 7.1 ± 7.3 mL/min/1.73 m2. Mean intra-individual variation in GFR (CILDI) was 10.3% (p < 0.003). Mean ± SD Css was 172 ± 185 min.
Conclusion
We hypothesise that changes in GFR >10.3% depict evolving AKI. If this were applicable to AKI, this is less than the 50% change in serum creatinine currently required to define AKI. CILDI is now ready for testing in patients with AKI.
Trial registration
This trial was registered with the European Union Clinical Trials Register (https://www.clinicaltrialsregister.eu/), registration number: 2010-019933-89.
doi:10.1186/s12967-015-0414-3
PMCID: PMC4336474
Acute kidney injury; Glomerular filtration rate; Iohexol; Validation
2.  Higher Order Amyloid Fibril Structure by MAS NMR and DNP Spectroscopy 
Journal of the American Chemical Society  2013;135(51):19237-19247.
Protein magic angle spinning (MAS) NMR spectroscopy has generated structural models of several amyloid fibril systems, thus providing valuable information regarding the forces and interactions that confer the extraordinary stability of the amyloid architecture. Despite these advances, however, obtaining atomic resolution information describing the higher levels of structural organization within the fibrils remains a significant challenge. Here, we detail MAS NMR experiments and sample labeling schemes designed specifically to probe such higher order amyloid structure and we have applied them to the fibrils formed by an eleven-residue segment of the amyloidogenic protein transthyretin (TTR(105-115)). These experiments have allowed us to define unambiguously not only the arrangement of the peptide β-strands into β-sheets but also the β-sheet interfaces within each protofilament, and in addition to identify the nature of the protofilament-to-protofilament contacts that lead to the formation of the complete fibril. Our efforts have resulted in 111 quantitative distance and torsion angle restraints (10 per residue) that describe the various levels of structure organization. The experiments benefited extensively from the use of dynamic nuclear polarization (DNP), which in some cases allowed us to shorten the data acquisition time from days to hours and to improve significantly the signal-to-noise ratios of the spectra. The β-sheet interface and protofilament interactions identified here revealed local variations in the structure that result in multiple peaks for the exposed N- and C-termini of the peptide and in inhomogeneous line-broadening for the side-chains buried within the interior of the fibrils.
doi:10.1021/ja409050a
PMCID: PMC3909659  PMID: 24304221
3.  Patient involvement in selection of immunosuppressive regimen following transplantation 
Transplantation has made a considerable difference to the lives of many patients. However, feedback from patients indicates that although having a transplant is a hugely positive experience, having to take medications indefinitely is one of the biggest challenges. An ideal scenario would be no medications following a transplant. A compromise would be a minimal number of medications, with minimal restrictions and as simple a regimen as possible. Although there is considerable research going into fine-tuning the management of the immune response to a transplant, to date there is no universal regimen that enables patients to remain free of immunosuppressant medications, making adherence paramount to maintain long-term allograft survival. This paper reviews the available immunosuppressant regimens and factors influencing choice from both the clinician’s and the patient’s perspective. Factors influencing the decision-making process, such as quality of life for patients, their satisfaction, acceptability, and adherence uptake are reviewed. We conclude with a further assessment of patient choice as a factor in regimen selection, its impact on adherence, and its implications.
doi:10.2147/PPA.S38987
PMCID: PMC4270302  PMID: 25525347
adherence; transplant; allograft; immunosuppressants; patient involvement; satisfaction; decision-making
4.  Urinary Expression of Novel Tissue Markers of Kidney Injury After Ureteroscopy, Shockwave Lithotripsy, and in Normal Healthy Controls 
Journal of Endourology  2013;27(12):1455-1462.
Abstract
Background and Purpose: Shockwave lithotripsy (SWL) and ureteroscopy (URS) are minimally invasive treatment alternatives for kidney stones. Although less invasive, SWL subjects the renal parenchyma to a high level of energy and the potential to cause renal injury. The ability to detect renal injury post-SWL in a reliable and noninvasive way would be clinically beneficial. Kidney injury molecule 1 (KIM-1) and N-acetyl-β-D-glucosaminidase (NAG) are two proteins secreted by the kidney into the urine and have been found to be sensitive markers of acute kidney injury in transplant patients. The aim of this work was to measure urinary levels of KIM-1 and NAG in patients with kidney stone who were treated by SWL or URS and in nonstone volunteers.
Patients and Methods: Patients with kidney stones who were treated by SWL (n=50) or URS (n=10) were recruited. Voided urine samples were collected before and 2 to 3 hours after URS and SWL. In addition, further urinary specimens were collected 2 days and 2 weeks post-SWL treatment. Voided urine samples from healthy volunteers were also collected.
Results: Mean KIM-1 values were increased in patients with kidney stones when compared with volunteers. KIM-1 and NAG levels significantly increased post-SWL and returned to baseline within 2 weeks post-SWL. Poor kidney function was significantly associated with increased biomarker activity both in baseline and post-SWL measurements. There was no significant change in urinary KIM-1 and NAG concentrations before and after URS.
Conclusions: Kim-1 and NAG levels significantly increased post-SWL treatment suggesting a potential role for these urinary markers in identifying patients at higher risk of tissue injury.
doi:10.1089/end.2013.0188
PMCID: PMC3997088  PMID: 24180435
6.  Discharge instructions for caregivers in the context of pediatric emergency care: a narrative synthesis protocol 
Systematic Reviews  2014;3:26.
Background
The period following discharge from a pediatric emergency department (ED) can be a time of significant vulnerability for caregivers who provide ongoing care to their child when they return home. Discharge communication practice varies widely at the individual practitioner and departmental level. At present, there are no nationally accepted guidelines for discharge communication for children and/or their caregivers in the ED.
The primary objective of this knowledge synthesis is to understand how and why discharge instructions work and under what conditions. We will also examine the contextual factors and barriers and facilitators associated with discharge communication across varied ED settings.
Methods/Design
Using an integrated narrative approach, we will synthesize different types of evidence and explore relationships within and between included studies to develop a theory-based and knowledge user-informed discharge communication practice guideline. We will follow key principles for knowledge synthesis including: (1) involvement of a multidisciplinary team (for example, information specialists, statisticians, and content experts); (2) developing focused and answerable questions in collaboration with the knowledge users; (3) using a systematic method including specific tools and techniques appropriate for answering questions concerned with effectiveness and the implementation of interventions; and, (4) involving knowledge users throughout the process in an integrated knowledge translation approach.
Discussion
This collaborative and narrative approach will be a determining factor in increasing the reliability, validity and relevance of the study findings for healthcare practice and policy decision-makers.
Trial registration
PROSPERO registration number: CRD42014007106
doi:10.1186/2046-4053-3-26
PMCID: PMC3995555  PMID: 24628948
Narrative synthesis; Discharge instruction; Patient education; Emergency medicine; Pediatrics
7.  Effect of Darapladib Treatment on Endarterectomy Carotid Plaque Lipoprotein-Associated Phospholipase A2 Activity: A Randomized, Controlled Trial 
PLoS ONE  2014;9(2):e89034.
Background
The aim of this study was to assess the effects of darapladib, a selective oral investigational lipoprotein-associated phospholipase A2 inhibitor, on both plasma and plaque lipoprotein-associated phospholipase A2 activity.
Methods
Patients undergoing elective carotid endarterectomy were randomized to darapladib 40 mg (n = 34), 80 mg (n = 34), or placebo (n = 34) for 14 days, followed by carotid endarterectomy 24 hours after the last dose of study medication.
Results
Darapladib 40 mg and 80 mg reduced plasma lipoprotein-associated phospholipase A2 activity by 52% and 81%, respectively, versus placebo (both P<0.001). Significant reductions in plaque lipoprotein-associated phospholipase A2 activity were also observed compared with placebo (P<0.0001), which equated to a 52% and 80% decrease compared with placebo. No significant differences were observed between groups in plaque lysophosphatidylcholine content or other biomarkers, although a dose-dependent decrease in plaque matrix metalloproteinase-9 mRNA expression was observed with darapladib 80 mg (P = 0.053 vs placebo). In a post-hoc analysis, plaque caspase-3 (P<0.001) and caspase-8 (P<0.05) activity were found to be significantly lower in the darapladib 80-mg group versus placebo. No major safety concerns were identified in the study.
Conclusions
Short-term treatment (14±4 days) with darapladib produced a robust, dose-dependent reduction in plasma lipoprotein-associated phospholipase A2 activity. More importantly, darapladib demonstrated placebo-corrected reductions in carotid plaque lipoprotein-associated phospholipase A2 activity of similar magnitude. Darapladib was generally well tolerated and no safety concerns were identified. Additional studies of longer duration are needed to explore whether these pharmacodynamic effects are associated with improved clinical outcomes, as might be hypothesized.
Trial Registration Information
Name of Registry 1: ClinicalTrials.gov
Registry Number 1: NCT01916720
Trial URL in Registry Database 1: www.clinicaltrials.gov/ct2/show/NCT01916720
Name of Registry 2: GSK Clinical Study Register
Registry Number 2∶480848/010
Trial URL in Registry Database 2: www.gsk-clinicalstudyregister.com/result_detail.jsp?protocolId=480848%2F010&studyId=74F5DB65-4661-4FA8-91D4-EBF78D769F24&compound=darapladib&type=Compound&letterrange=A-F
doi:10.1371/journal.pone.0089034
PMCID: PMC3930668  PMID: 24586490
8.  Xenobiotic Metabolism: The Effect of Acute Kidney Injury on Non-Renal Drug Clearance and Hepatic Drug Metabolism 
Acute kidney injury (AKI) is a common complication of critical illness, and evidence is emerging that suggests AKI disrupts the function of other organs. It is a recognized phenomenon that patients with chronic kidney disease (CKD) have reduced hepatic metabolism of drugs, via the cytochrome P450 (CYP) enzyme group, and drug dosing guidelines in AKI are often extrapolated from data obtained from patients with CKD. This approach, however, is flawed because several confounding factors exist in AKI. The data from animal studies investigating the effects of AKI on CYP activity are conflicting, although the results of the majority do suggest that AKI impairs hepatic CYP activity. More recently, human study data have also demonstrated decreased CYP activity associated with AKI, in particular the CYP3A subtypes. Furthermore, preliminary data suggest that patients expressing the functional allele variant CYP3A5*1 may be protected from the deleterious effects of AKI when compared with patients homozygous for the variant CYP3A5*3, which codes for a non-functional protein. In conclusion, there is a need to individualize drug prescribing, particularly for the more sick and vulnerable patients, but this needs to be explored in greater depth.
doi:10.3390/ijms15022538
PMCID: PMC3958866  PMID: 24531139
acute kidney injury; cytochrome P450; drug metabolism; pharmacogenetics; pharmacokinetics; CYP3A
9.  Platelet Aggregation Unchanged by Lipoprotein-Associated Phospholipase A2 Inhibition: Results from an In Vitro Study and Two Randomized Phase I Trials 
PLoS ONE  2014;9(1):e83094.
Background
We explored the theorized upregulation of platelet-activating factor (PAF)– mediated biologic responses following lipoprotein-associated phospholipase A2 (Lp-PLA2) inhibition using human platelet aggregation studies in an in vitro experiment and in 2 clinical trials.
Methods and Results
Full platelet aggregation concentration response curves were generated in vitro to several platelet agonists in human plasma samples pretreated with rilapladib (selective Lp-PLA2 inhibitor) or vehicle. This was followed by a randomized, double-blind crossover study in healthy adult men (n = 26) employing a single-agonist dose assay of platelet aggregation, after treatment of subjects with 250 mg oral rilapladib or placebo once daily for 14 days. This study was followed by a second randomized, double-blind parallel-group trial in healthy adult men (n = 58) also treated with 250 mg oral rilapladib or placebo once daily for 14 days using a full range of 10 collagen concentrations (0–10 µg/ml) for characterizing EC50 values for platelet aggregation for each subject. Both clinical studies were conducted at the GlaxoSmithKline Medicines Research Unit in the Prince of Wales Hospital, Sydney, Australia. EC50 values derived from multiple agonist concentrations were compared and no pro-aggregant signals were observed during exposure to rilapladib in any of these platelet studies, despite Lp-PLA2 inhibition exceeding 90%. An increase in collagen-mediated aggregation was observed 3 weeks post drug termination in the crossover study (15.4% vs baseline; 95% confidence interval [CI], 3.9–27.0), which was not observed during the treatment phase and was not observed in the parallel-group study employing a more robust EC50 examination.
Conclusions
Lp-PLA2 inhibition does not enhance platelet aggregation.
Trial Registration
1) Study 1: ClinicalTrials.gov NCT01745458 2) Study 2: ClinicalTrials.gov NCT00387257
doi:10.1371/journal.pone.0083094
PMCID: PMC3903475  PMID: 24475026
10.  Specificity of Lipoprotein-Associated Phospholipase A2 Towards Oxidized Phosphatidylserines: LC-ESI-MS Characterization of Products and Computer Modeling of Interactions 
Biochemistry  2012;51(48):9736-9750.
Ca2+ independent lipoprotein associated phospholipase A2 (Lp-PLA2) is a member of the phospholipase A2 superfamily with a distinguishing characteristic of high specificity for oxidatively modified sn-2 fatty acid residues in phospholipids which has been especially well characterized for peroxidized species of phosphatidylcholines (PC). The ability of Lp-PLA2 to hydrolyze peroxidized species of phosphatidylserine (PS) – acting as a recognition signal for clearance of apoptotic cells by professional phagocytes - as well as the products of the reaction have not been investigated. We performed LC-MS-ESI-based structural characterization of oxygenated/hydrolyzed molecular species of PS - containing linoleic acid in either sn-2 position (C18:0/C18:2) or in both sn-1 and sn-2 positions (C18:2/C18:2) - formed in cytochrome c/ H2O2 driven enzymatic oxidation reaction. Cytochrome c has been chosen as a catalyst of peroxidation reactions due to its likely involvement in PS oxidation in apoptotic cells. We found that Lp-PLA2 catalyzed the hydrolysis of both non-truncated and truncated (oxidatively fragmented) species of oxidized PS species albeit with different efficiencies and performed detailed characterization of the major reaction products – oxygenated derivatives of linoleic acid as well as non-oxygenated and oxygenated species of lyso-PS. Among linoleic acid products, derivatives oxygenated at the C9 position, including 9-hydroxyoctadecadienoic acid (9-HODE) – a potent ligand of G protein-coupled receptor G2A - were the most abundant. Computer modeling of interactions of Lp-PLA2 with different PS oxidized species indicated that they are able to bind in proximity (<5Å) to Ser273 and His351 of the catalytic triad. For 9-hydroxy- and 9-hydroperoxy- derivatives of oxidized PS, the sn-2 ester bond was positioned within the very close proximity (<3Å) from the Ser273 residue - a nucleophile directly attacking the sn-2 bond – thus favoring the hydrolysis reaction. We suggest that oxidatively modified free fatty acids and lyso-PS species generated by Lp-PLA2 may represent important signals facilitating and regulating execution of apoptotic and phagocytosis programs essential for control of inflammation.
doi:10.1021/bi301024e
PMCID: PMC3567262  PMID: 23148485
11.  Metabolic cost and mechanics of walking in women with fibromyalgia syndrome 
BMC Research Notes  2013;6:420.
Background
Fibromyalgia syndrome (FS) is characterized by the presence of widespread pain, fatigue, muscle weakness and reduced work capacity. Previous research has demonstrated that women with fibromyalgia have altered walking (gait) patterns, which may be a consequence of muscular pain. This altered gait is characterized by greater reliance on hip flexors rather than ankle plantar flexors and resembles gait patterns seen in normal individuals walking at higher speeds, suggesting that gait of individuals with fibromyalgia may be less efficient.
This study compared rates of energy expenditure of 6 females with FS relative to 6 normal, age and weight matched controls, at various walking speeds on a motorized treadmill. Metabolic measurements including V02 (ml/kg/min), respirations, heart rate and calculated energy expenditures as well as the Borg Scale of Perceived Exertion scale ratings were determined at baseline and for 10 min while walking at each of 2, 4 and 5 km/hour on 1% grade. Kinematic recordings of limb and body movements while treadmill walking and separate measurements of ground reaction forces while walking over ground were also determined. In addition, all subjects completed the RAND 36-Item Health Survey (1.0).
Findings
Gait analysis results were similar to previous reports of altered gait patterns in FS females. Despite noticeable differences in gait patterns, no significant differences (p > 0.05) existed between the FS and control subjects on any metabolic measures at any walking speed. Total number of steps taken was also similar between groups. Ratings on the Borg Scale of Perceived Exertion, the RAND and self-reported levels of pain indicated significantly greater (p < 0.05) perceived effort and pain in FS subjects relative to control subjects during walking and daily activities.
Conclusions
The altered gait patterns and greater perceptions of effort and pain did not significantly increase the metabolic costs of walking in women with FS and hence, increased sensations of fatigue in FS women may not be related to alteration in metabolic cost of ambulation.
doi:10.1186/1756-0500-6-420
PMCID: PMC3853222  PMID: 24139565
Fibromyalgia; Gait; Metabolic cost of walking; Pain
12.  Mechanistic and environmental control of the prevalence and lifetime of amyloid oligomers 
Nature communications  2013;4:1891.
Amyloid fibrils are self-assembled protein aggregates implicated in a number of human diseases. Fragmentation-dominated models for the self-assembly of amyloid fibrils have had important successes in explaining the kinetics of amyloid fibril formation but predict fibril length distributions that do not match experiments. Here we resolve this inconsistency using a combination of experimental kinetic measurements and computer simulations. We provide evidence for a structural transition that occurs at a critical fibril mass concentration, or ‘CFC’, above which fragmentation of fibrils is suppressed. Our simulations predict the formation of distinct fibril length distributions above and below the CFC, which we confirm by electron microscopy. These results point to a new picture of amyloid fibril growth in which structural transitions that occur during self-assembly have strong effects on the final population of aggregate species with small, and potentially cytotoxic, oligomers dominating for long periods of time at protein concentrations below the CFC.
doi:10.1038/ncomms2909
PMCID: PMC3796876  PMID: 23695685
13.  Influence of the Vaginal Microbiota on Toxic Shock Syndrome Toxin 1 Production by Staphylococcus aureus 
Menstrual toxic shock syndrome (TSS) is a serious illness that afflicts women of premenopausal age worldwide and arises from vaginal infection by Staphylococcus aureus and concurrent production of toxic shock syndrome toxin-1 (TSST-1). Studies have illustrated the capacity of lactobacilli to reduce S. aureus virulence, including the capacity to suppress TSST-1. We hypothesized that an aberrant microbiota characteristic of pathogenic bacteria would induce the increased production of TSST-1 and that this might represent a risk factor for the development of TSS. A S. aureus TSST-1 reporter strain was grown in the presence of vaginal swab contents collected from women with a clinically healthy vaginal status, women with an intermediate status, and those diagnosed with bacterial vaginosis (BV). Bacterial supernatant challenge assays were also performed to test the effects of aerobic vaginitis (AV)-associated pathogens toward TSST-1 production. While clinical samples from healthy and BV women suppressed toxin production, in vitro studies demonstrated that Streptococcus agalactiae and Enterococcus spp. significantly induced TSST-1 production, while some Lactobacillus spp. suppressed it. The findings suggest that women colonized by S. aureus and with AV, but not BV, may be more susceptible to menstrual TSS and would most benefit from prophylactic treatment.
doi:10.1128/AEM.02908-12
PMCID: PMC3592239  PMID: 23315732
14.  Evolutionary Patterns of Bone Histology and Bone Compactness in Xenarthran Mammal Long Bones 
PLoS ONE  2013;8(7):e69275.
Bone microstructure reflects physiological characteristics and has been shown to contain phylogenetic and ecological signals. Although mammalian long bone histology is receiving increasing attention, systematic examination of the main clades has not yet been performed. Here we describe the long bone microstructure of Xenarthra based on thin sections representing twenty-two species. Additionally, patterns in bone compactness of humeri and femora are investigated. The primary bone tissue of xenarthran long bones is composed of a mixture of woven, parallel-fibered and lamellar bone. The vascular canals have a longitudinal, reticular or radial orientation and are mostly arranged in an irregular manner. Concentric rows of vascular canals and laminar organization of the tissue are only found in anteater bones. The long bones of adult specimens are marked by dense Haversian bone, a feature that has been noted for most groups of mammals. In the long bones of armadillos, secondary osteons have an oblique orientation within the three-dimensional bone tissue, thus resulting in their irregular shape when the bones are sectioned transversely. Secondary remodeling is generally more extensive in large taxa than in small taxa, and this could be caused by increased loading. Lines of arrested growth are assumed to be present in all specimens, but they are restricted to the outermost layer in bones of armadillos and are often masked by secondary remodeling in large taxa. Parameters of bone compactness show a pattern in the femur that separates Cingulata and Pilosa (Folivora and Vermilingua), with cingulates having a lower compactness than pilosans. In addition, cingulates show an allometric relationship between humeral and femoral bone compactness.
doi:10.1371/journal.pone.0069275
PMCID: PMC3706384  PMID: 23874932
15.  An Evaluation of Interindividual Responses to the Orally Administered Neurotransmitter β-Alanine 
Journal of Amino Acids  2013;2013:429847.
Previously, we have identified β-alanine as a potential endogenous anticonvulsant molecule. β-Alanine occurs within the human central nervous system and has been identified as both an inhibitory neuromodulator and neurotransmitter that is bioavailable to brain after oral administration. During preliminary compounding trials to ascertain dosing strategies for β-alanine, we noted pronounced differences in the side effect profile experienced by individuals of Asian and Caucasian descent. To investigate whether ethnicity affects β-alanine-induced side effects, we administered 3 g of β-alanine in 200 mL of fruit drink to ten people of each ethnic background and observed them for 30 minutes. Data collected included basic physical statistics (height, age, and weight) and descriptions of all side effects, as reported by participants. We found that participants of Asian descent experienced paraesthesia, but significantly different in time of onset, intensity, and anatomical localization, as compared to the effects experienced by Caucasian participants. Since β-alanine is an endogenous neurotransmitter substance within human brain, these side effect differences were unexpected.
doi:10.1155/2013/429847
PMCID: PMC3705897  PMID: 23864937
16.  Quantifying Disorder through Conditional Entropy: An Application to Fluid Mixing 
PLoS ONE  2013;8(6):e65617.
In this paper, we present a method to quantify the extent of disorder in a system by using conditional entropies. Our approach is especially useful when other global, or mean field, measures of disorder fail. The method is equally suited for both continuum and lattice models, and it can be made rigorous for the latter. We apply it to mixing and demixing in multicomponent fluid membranes, and show that it has advantages over previous measures based on Shannon entropies, such as a much diminished dependence on binning and the ability to capture local correlations. Further potential applications are very diverse, and could include the study of local and global order in fluid mixtures, liquid crystals, magnetic materials, and particularly biomolecular systems.
doi:10.1371/journal.pone.0065617
PMCID: PMC3677935  PMID: 23762401
18.  Estimated Glomerular Filtration Rate Correlates Poorly with Four-Hour Creatinine Clearance in Critically Ill Patients with Acute Kidney Injury 
Introduction. RIFLE and AKIN provide a standardised classification of acute kidney injury (AKI), but their categorical rather than continuous nature restricts their use to a research tool. A more accurate real-time description of renal function in AKI is needed, and some published data suggest that equations based on serum creatinine that estimate glomerular filtration rate (eGFR) can provide this. In addition, incorporating serum cystatin C concentration into estimates of GFR may improve their accuracy, but no eGFR equations are validated in critically ill patients with AKI. Aim. This study tests whether creatinine or cystatin-C-based eGFR equations, used in patients with CKD, offer an accurate representation of 4-hour creatinine clearance (4CrCl) in critically ill patients with AKI. Methods. Fifty-one critically ill patients with AKI were recruited. Thirty-seven met inclusion criteria, and the performance of eGFR equations was compared to 4CrCl. Results. eGFR equations were better than creatinine alone at predicting 4CrCl. Adding cystatin C to estimates did not improve the bias or add accuracy. The MDRD 7 eGFR had the best combination of correlation, bias, percentage error and accuracy. None were near acceptable standards quoted in patients with chronic kidney disease (CKD). Conclusions. eGFR equations are not sufficiently accurate for use in critically ill patients with AKI. Incorporating serum cystatin C does not improve estimates. eGFR should not be used to describe renal function in patients with AKI. Standards of accuracy for validating eGFR need to be set.
doi:10.1155/2013/406075
PMCID: PMC3576793  PMID: 23476756
19.  Infectious Disease, Endangerment, and Extinction 
Infectious disease, especially virulent infectious disease, is commonly regarded as a cause of fluctuation or decline in biological populations. However, it is not generally considered as a primary factor in causing the actual endangerment or extinction of species. We review here the known historical examples in which disease has, or has been assumed to have had, a major deleterious impact on animal species, including extinction, and highlight some recent cases in which disease is the chief suspect in causing the outright endangerment of particular species. We conclude that the role of disease in historical extinctions at the population or species level may have been underestimated. Recent methodological breakthroughs may lead to a better understanding of the past and present roles of infectious disease in influencing population fitness and other parameters.
doi:10.1155/2013/571939
PMCID: PMC3562694  PMID: 23401844
20.  The effect of lipoprotein-associated phospholipase A2 deficiency on pulmonary allergic responses in aspergillus fumigatus sensitized mice 
Respiratory Research  2012;13(1):100.
Background
Lipoprotein-associated phospholipase A2 (Lp-PLA2)/platelet-activating factor acetylhydrolase (PAF-AH) has been implicated in the pathogenesis of cardiovascular disease. A therapeutic targeting of this enzyme was challenged by the concern that increased circulating platelet activating factor (PAF) may predispose to or increase the severity of the allergic airway response. The aim of this study was to investigate whether Lp-PLA2 gene deficiency increases the risk of PAF and IgE-mediated inflammatory responses in vitro and in vivo using mouse models.
Methods
Lp-PLA2-/- mice were generated and back crossed to the C57BL/6 background. PAF-AH activity was measured using a hydrolysis assay in serum and bronchoalveolar lavage (BAL) samples obtained from mice. Aspergillus fumigatus (Af)-specific serum was prepared for passive allergic sensitization of mice in vivo and mast cells in vitro. β- hexosaminidase release was studied in bone marrow derived mast cells sensitized with Af-specific serum or DNP-IgE and challenged with Af or DNP, respectively. Mice were treated with lipopolysaccharide (LPS) and PAF intratracheally and studied 24 hours later. Mice were sensitized either passively or actively against Af and were studied 48 hours after a single intranasal Af challenge. Airway responsiveness to methacholine, inflammatory cell influx in the lung tissue and BAL, immunoglobulin (ELISA) and cytokine (Luminex) profiles were compared between the wild type (WT) and Lp-PLA2-/- mice.
Results
PAF-AH activity was reduced but not completely abolished in Lp-PLA2-/- serum or by in vitro treatment of serum samples with a high saturating concentration of the selective Lp-PLA2 inhibitor, SB-435495. PAF inhalation significantly enhanced airway inflammation of LPS treated WT and Lp-PLA2-/- mice to a similar extent. Sensitized WT and Lp-PLA2-/- bone-marrow derived mast cells released β-hexosaminidase following stimulation by allergen or IgE crosslinking to equivalent levels. Wild type and Lp-PLA2-/- mice responded to passive or active allergic sensitization by significant IgE production, airway inflammation and hyperresponsiveness after Af challenge. BAL cell influx was not different between these strains while IL-4, IL-5, IL-6 and eotaxin release was attenuated in Lp-PLA2-/- mice. There were no differences in the amount of total IgE levels in the Af sensitized WT and Lp-PLA2-/- mice.
Conclusions
We conclude that Lp-PLA2 deficiency in C57BL/6 mice did not result in a heightened airway inflammation or hyperresponsiveness after PAF/LPS treatment or passive or active allergic sensitization and challenge.
doi:10.1186/1465-9921-13-100
PMCID: PMC3546878  PMID: 23140447
Lp-PLA2; PAF-AH; Knock-out mice; Airway inflammation; IgE; Mast cells; Degranulation
21.  Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR 
Journal of the American Chemical Society  2011;133(35):13967-13974.
We describe magic-angle spinning NMR experiments designed to elucidate the interstrand architecture of amyloid fibrils. Three methods are introduced for this purpose, two being based on the analysis of long-range 13C-13C correlation spectra and a third based on the identification of intermolecular interactions in 13C-15N spectra. We show, in studies of fibrils formed by the 86-residue SH3 domain of PI3 kinase (PI3-SH3), that efficient 13C-13C correlation spectra display a resonance degeneracy that establishes a parallel, in-register alignment of the proteins in the amyloid fibrils. In addition, this degeneracy can be circumvented to yield direct intermolecular constraints. The 13C-13C experiments are corroborated by 15N-13C correlation spectrum obtained from a mixed [15N,12C]/[14N,13C] sample which directly quantifies interstrand distances. Furthermore, when the spectra are recorded with signal enhancement provided by dynamic nuclear polarization (DNP) at 100 K, we demonstrate a dramatic increase (from 23 to 52) in the number of intermolecular 15N-13C constraints present in the spectra. The increase in the information content is due to the enhanced signal intensities and to the fact that dynamic processes, leading to spectral intensity losses, are quenched at low temperatures. Thus, acquisition of low temperature spectra addresses a problem that is frequently encountered in MAS spectra of proteins. In total the experiments provide 111 intermolecular 13C-13C and 15N-13C constraints that establish that the PI3-SH3 protein strands are aligned in a parallel, in-register arrangement within the amyloid fibril.
doi:10.1021/ja203756x
PMCID: PMC3190134  PMID: 21774549
Amyloid fibrils; magic angle spinning; dynamic nuclear polarization; phosphatidylinositol-3-kinase SH3 domain (PI3-SH3)
22.  Individualized immunosuppression in transplant patients: potential role of pharmacogenetics 
The immunosuppressive drugs used to prevent the rejection of transplanted organs have a narrow therapeutic index. Under treatment results in episodes of rejection leading to either damage or loss of the organ. Over immunosuppression increases the risk of infection and malignancy as well as drug specific complications including diabetes mellitus and nephrotoxicity. There is wide variation in the drug dose required to achieve target blood concentrations and there is often dissociation between pharmacokinetics and pharmacodynamics. Currently, immunosuppressive drug treatment is individualized based on a clinical assessment of the risk of rejection or toxicity. Therapeutic drug monitoring is routinely employed for several immunosuppressive drugs. Pharmacogenetics has the potential to complement therapeutic drug monitoring but clinical benefit has yet to be demonstrated. Novel biomarker-based approaches to risk stratification and pharmacodynamic monitoring are under development and are ready for clinical trials.
doi:10.2147/PGPM.S21743
PMCID: PMC3513229  PMID: 23226063
CYP3A5; immunosuppression; pharmacogenetics; transplantation
23.  PPARα activation promotes macrophage reverse cholesterol transport through an LXR-dependent pathway 
Objective
Peroxisome proliferator-activate receptorα (PPARα) activation has been shown in vitro to increase macrophage cholesterol efflux, the initial step in reverse cholesterol transport (RCT). However, it remains unclear whether PPARα activation promotes macrophage RCT in vivo.
Methods and Results
We demonstrated that a specific potent PPARα agonist GW7647 inhibited atherosclerosis and promoted macrophage RCT in hypercholesterolemic mice expressing the human apoA-I gene. We compared the effect of GW7647 on RCT in human apoA-I transgenic (hA-ITg) mice with wild-type (WT) mice and showed that the PPARα agonist promoted RCT in hA-ITg mice to a much greater extent than in WT mice, indicating that human apoA-I expression is important for PPARα-induced RCT. We further investigated the dependence of the macrophage PPARα-LXR pathway on the promotion of RCT by GW7647. Primary murine macrophages lacking PPARα or LXR abolished the ability of GW7647 to promote RCT in hA-ITg mice. In concert, the PPARα agonist promoted cholesterol efflux and ABCA1/ABCG1 expression in primary macrophages and this was also by the PPARα-LXR pathway.
Conclusion
Our observations demonstrate that a potent PPARα agonist promotes macrophage RCT in vivo in a manner that is enhanced by human apoA-I expression and dependent on both macrophage PPARα and LXR expression.
doi:10.1161/ATVBAHA.111.225383
PMCID: PMC3202300  PMID: 21441141
PPARα; LXR; cholesterol efflux; reverse cholesterol transport; apolipoprotein A-I
24.  PPARγ activation redirects macrophage cholesterol from fecal excretion to adipose tissue uptake in mice via SR-BI 
Biochemical Pharmacology  2011;81(7):934-941.
PPARγ agonists, used in the treatment of Type 2 diabetes, can raise HDL-cholesterol, therefore could potentially stimulate macrophage-to-feces reverse cholesterol transport (RCT). We aimed to test whether PPARγ activation promotes macrophage RCT in vivo. Macrophage RCT was assessed in mice using cholesterol loaded/3H-cholesterol labeled macrophages. PPARγ agonist GW7845 (20 mg/kg/day) did not change 3H-tracer plasma appearance, but surprisingly decreased fecal 3H-free sterol excretion by 43% (P < 0.01) over 48 h. Total free cholesterol efflux from macrophages to serum (collected from control and GW7845 groups) was not different, although ABCA1-mediated efflux was significantly higher with GW7845. To determine the effect of PPARγ activation on HDL cholesterol uptake by different tissues, the metabolic fate of HDL labeled with 3H-cholesteryl ether (CE) was also measured. We observed two-fold increase in HDL derived 3H-CE uptake by adipose tissue (P < 0.005) with concomitant 22% decrease in HDL derived 3H-CE uptake by the liver (P < 0.05) in GW7845 treated wild type mice. This was associated with a significant increase in SR-BI protein expression in adipose tissue, but not liver. The same experiment in SR-BI knockout mice, showed no difference in HDL derived 3H-CE uptake by adipose tissue or liver. In conclusion, PPARγ activation decreases the fecal excretion of macrophage derived cholesterol in mice. This is not due to inhibition of cholesterol efflux from macrophages, but rather involves redirection of effluxed cholesterol from liver towards adipose tissue uptake via SR-BI. This represents a novel mechanism for regulation of RCT and may extend the therapeutic implications of these ligands.
doi:10.1016/j.bcp.2011.01.012
PMCID: PMC3315103  PMID: 21291868
PPARγ; HDL; Reverse cholesterol transport; Adipose tissue; SR-BI

Results 1-25 (75)