PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (51)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Play it again, Sam: brain correlates of emotional music recognition 
Background: Music can elicit strong emotions and can be remembered in connection with these emotions even decades later. Yet, the brain correlates of episodic memory for highly emotional music compared with less emotional music have not been examined. We therefore used fMRI to investigate brain structures activated by emotional processing of short excerpts of film music successfully retrieved from episodic long-term memory.
Methods: Eighteen non-musicians volunteers were exposed to 60 structurally similar pieces of film music of 10 s length with high arousal ratings and either less positive or very positive valence ratings. Two similar sets of 30 pieces were created. Each of these was presented to half of the participants during the encoding session outside of the scanner, while all stimuli were used during the second recognition session inside the MRI-scanner. During fMRI each stimulation period (10 s) was followed by a 20 s resting period during which participants pressed either the “old” or the “new” button to indicate whether they had heard the piece before.
Results: Musical stimuli vs. silence activated the bilateral superior temporal gyrus, right insula, right middle frontal gyrus, bilateral medial frontal gyrus and the left anterior cerebellum. Old pieces led to activation in the left medial dorsal thalamus and left midbrain compared to new pieces. For recognized vs. not recognized old pieces a focused activation in the right inferior frontal gyrus and the left cerebellum was found. Positive pieces activated the left medial frontal gyrus, the left precuneus, the right superior frontal gyrus, the left posterior cingulate, the bilateral middle temporal gyrus, and the left thalamus compared to less positive pieces.
Conclusion: Specific brain networks related to memory retrieval and emotional processing of symphonic film music were identified. The results imply that the valence of a music piece is important for memory performance and is recognized very fast.
doi:10.3389/fpsyg.2014.00114
PMCID: PMC3927073  PMID: 24634661
musical memory; episodic memory; emotions; brain-processing
2.  N1 enhancement in synesthesia during visual and audio–visual perception in semantic cross-modal conflict situations: an ERP study 
Synesthesia entails a special kind of sensory perception, where stimulation in one sensory modality leads to an internally generated perceptual experience of another, not stimulated sensory modality. This phenomenon can be viewed as an abnormal multisensory integration process as here the synesthetic percept is aberrantly fused with the stimulated modality. Indeed, recent synesthesia research has focused on multimodal processing even outside of the specific synesthesia-inducing context and has revealed changed multimodal integration, thus suggesting perceptual alterations at a global level. Here, we focused on audio–visual processing in synesthesia using a semantic classification task in combination with visually or auditory–visually presented animated and in animated objects in an audio–visual congruent and incongruent manner. Fourteen subjects with auditory-visual and/or grapheme-color synesthesia and 14 control subjects participated in the experiment. During presentation of the stimuli, event-related potentials were recorded from 32 electrodes. The analysis of reaction times and error rates revealed no group differences with best performance for audio-visually congruent stimulation indicating the well-known multimodal facilitation effect. We found enhanced amplitude of the N1 component over occipital electrode sites for synesthetes compared to controls. The differences occurred irrespective of the experimental condition and therefore suggest a global influence on early sensory processing in synesthetes.
doi:10.3389/fnhum.2014.00021
PMCID: PMC3906591  PMID: 24523689
synesthesia; multimodal; EEG; N1; integration
3.  Itch Relief by Mirror Scratching. A Psychophysical Study 
PLoS ONE  2013;8(12):e82756.
Objective
The goal of this study was to test whether central mechanisms of scratching-induced itch attenuation can be activated by scratching the limb contralateral to the itching limb when the participant is made to visually perceive the non-itching limb as the itching limb by means of mirror images.
Methods
Healthy participants were asked to assess the intensity of an experimentally induced itch at their right forearm while they observed externally guided scratch movements either at their right (itching) or left (non-itching) forearm which were either mirrored or not mirrored. In the first experiment, a mirror placed between the participant’s forearms was used to create the visual illusion that the participant’s itching (right) forearm was being scratched while in fact the non-itching (left) forearm was scratched. To control visibility of the left (non-mirrored) forearm, a second experiment was performed in which unflipped and flipped real-time video displays of the participant’s forearms were used to create experimental conditions in which the participant visually perceived scratching either on one forearm only, on both forearms, or no scratching at all.
Results
In both experiments, scratching the non-itching limb attenuated perceived itch intensity significantly and selectively in the mirror condition, i.e., when the non-itching forearm was visually perceived as the itching limb.
Discussion
These data provide evidence that the visual illusion that an itching limb is being scratched while in fact the non-itching limb contralateral to the itching limb is scratched, can lead to significant itch relief. This effect might be due to a transient illusionary intersensory perceptual congruency of visual, tactile and pruriceptive signals. “Mirror scratching” might provide an alternative treatment to reduce itch perception in focal skin diseases with persistent pruritus without causing additional harm to the affected skin and might therefore have significant clinical impact.
doi:10.1371/journal.pone.0082756
PMCID: PMC3873464  PMID: 24386113
4.  An ERP-study of brand and no-name products 
BMC Neuroscience  2013;14:149.
Background
Brands create product personalities that are thought to affect consumer decisions. Here we assessed, using the Go/No-go Association Task (GNAT) from social psychology, whether brands as opposed to no-name products are associated with implicit positive attitudes. Healthy young German participants viewed series of photos of cosmetics and food items (half of them brands) intermixed with positive and negative words. In any given run, one category of goods (e.g., cosmetics) and one kind of words (e.g., positive) had to be responded to, whereas responses had to be withheld for the other categories. Event-related brain potentials were recorded during the task.
Results
Unexpectedly, there were no response-time differences between congruent (brand and positive words) and incongruent (brand and negative words) pairings but ERPs showed differences as a function of congruency in the 600–750 ms time-window hinting at the existence of implicit attitudes towards brand and no-name stimuli. This finding deserves further investigation in future studies. Moreover, the amplitude of the late positive component (LPC) was found to be enhanced for brand as opposed to no-name stimuli.
Conclusions
Congruency effects suggest that ERPs are sensitive to implicit attitudes. Moreover, the results for the LPC imply that pictures of brand products are more arousing than those of no-name products, which may ultimately contribute to consumer decisions.
doi:10.1186/1471-2202-14-149
PMCID: PMC3840626  PMID: 24267403
Go/Nogo; Event-related potentials; Brands; Neuromarketing; Implicit associations; Late positive component; Lateralized readiness potential
5.  Altered Resting State Brain Networks in Parkinson’s Disease 
PLoS ONE  2013;8(10):e77336.
Parkinson’s disease (PD) is a neurodegenerative disorder affecting dopaminergic neurons in the substantia nigra leading to dysfunctional cortico-striato-thalamic-cortical loops. In addition to the characteristic motor symptoms, PD patients often show cognitive impairments, affective changes and other non-motor symptoms, suggesting system-wide effects on brain function. Here, we used functional magnetic resonance imaging and graph-theory based analysis methods to investigate altered whole-brain intrinsic functional connectivity in PD patients (n = 37) compared to healthy controls (n = 20). Global network properties indicated less efficient processing in PD. Analysis of brain network modules pointed to increased connectivity within the sensorimotor network, but decreased interaction of the visual network with other brain modules. We found lower connectivity mainly between the cuneus and the ventral caudate, medial orbitofrontal cortex and the temporal lobe. To identify regions of altered connectivity, we mapped the degree of intrinsic functional connectivity both on ROI- and on voxel-level across the brain. Compared to healthy controls, PD patients showed lower connectedness in the medial and middle orbitofrontal cortex. The degree of connectivity was also decreased in the occipital lobe (cuneus and calcarine), but increased in the superior parietal cortex, posterior cingulate gyrus, supramarginal gyrus and supplementary motor area. Our results on global network and module properties indicated that PD manifests as a disconnection syndrome. This was most apparent in the visual network module. The higher connectedness within the sensorimotor module in PD patients may be related to compensation mechanism in order to overcome the functional deficit of the striato-cortical motor loops or to loss of mutual inhibition between brain networks. Abnormal connectivity in the visual network may be related to adaptation and compensation processes as a consequence of altered motor function. Our analysis approach proved sensitive for detecting disease-related localized effects as well as changes in network functions on intermediate and global scale.
doi:10.1371/journal.pone.0077336
PMCID: PMC3810472  PMID: 24204812
6.  Extent of cortical involvement in amyotrophic lateral sclerosis – an analysis based on cortical thickness 
BMC Neurology  2013;13:148.
Background
Besides the defining involvement of upper and lower motor neurons, the involvement of extramotor structures has been increasingly acknowledged in amyotrophic lateral sclerosis (ALS).
Methods
Here we investigated a group of 14 mildly to moderately affected ALS patients and 14 age-matched healthy control participants using cortical thickness analysis. Cortical thickness was determined from high resolution 3D T1 magnetic resonance images and involved semiautomatic segmentation in grey and white matter, cortical alignment and determination of thickness using the Laplace method. In addition to a whole-cortex analysis a region of interest approach was applied.
Results
ALS patients showed regions of significant cortical thinning in the pre- and postcentral gyri bilaterally. Further regions of cortical thinning included superior and inferior parietal lobule, angular and supramarginal gyrus, insula, superior frontal, temporal and occipital regions, thus further substantiating extramotor involvement in ALS. A relationship between cortical thickness of the right superior frontal cortex and clinical severity (assessed by the ALS functional rating scale) was also demonstrated.
Conclusions
Cortical thickness is reduced in ALS not only in motor areas but in widespread non-motor cortical areas. Cortical thickness is related to clinical severity.
doi:10.1186/1471-2377-13-148
PMCID: PMC3853794  PMID: 24138960
ALS; Cortical thickness; MRI
7.  Preattentive processing of emotional musical tones: a multidimensional scaling and ERP study 
Musical emotion can be conveyed by subtle variations in timbre. Here, we investigated whether the brain is capable to discriminate tones differing in emotional expression by recording event-related potentials (ERPs) in an oddball paradigm under preattentive listening conditions. First, using multidimensional Fechnerian scaling, pairs of violin tones played with a happy or sad intonation were rated same or different by a group of non-musicians. Three happy and three sad tones were selected for the ERP experiment. The Fechnerian distances between tones within an emotion were in the same range as the distances between tones of different emotions. In two conditions, either 3 happy and 1 sad or 3 sad and 1 happy tone were presented in pseudo-random order. A mismatch negativity for the emotional deviant was observed, indicating that in spite of considerable perceptual differences between the three equiprobable tones of the standard emotion, a template was formed based on timbral cues against which the emotional deviant was compared. Based on Juslin's assumption of redundant code usage, we propose that tones were grouped together, because they were identified as belonging to one emotional category based on different emotion-specific cues. These results indicate that the brain forms an emotional memory trace at a preattentive level and thus, extends previous investigations in which emotional deviance was confounded with physical dissimilarity. Differences between sad and happy tones were observed which might be due to the fact that the happy emotion is mostly communicated by suprasegmental features.
doi:10.3389/fpsyg.2013.00656
PMCID: PMC3779798  PMID: 24065950
preattentive processing; musical emotion; timbre; event-related potential; mismatch negativity; multidimensional scaling
8.  Observation of sonified movements engages a basal ganglia frontocortical network 
BMC Neuroscience  2013;14:32.
Background
Producing sounds by a musical instrument can lead to audiomotor coupling, i.e. the joint activation of the auditory and motor system, even when only one modality is probed. The sonification of otherwise mute movements by sounds based on kinematic parameters of the movement has been shown to improve motor performance and perception of movements.
Results
Here we demonstrate in a group of healthy young non-athletes that congruently (sounds match visual movement kinematics) vs. incongruently (no match) sonified breaststroke movements of a human avatar lead to better perceptual judgement of small differences in movement velocity. Moreover, functional magnetic resonance imaging revealed enhanced activity in superior and medial posterior temporal regions including the superior temporal sulcus, known as an important multisensory integration site, as well as the insula bilaterally and the precentral gyrus on the right side. Functional connectivity analysis revealed pronounced connectivity of the STS with the basal ganglia and thalamus as well as frontal motor regions for the congruent stimuli. This was not seen to the same extent for the incongruent stimuli.
Conclusions
We conclude that sonification of movements amplifies the activity of the human action observation system including subcortical structures of the motor loop. Sonification may thus be an important method to enhance training and therapy effects in sports science and neurological rehabilitation.
doi:10.1186/1471-2202-14-32
PMCID: PMC3602090  PMID: 23496827
9.  Recognition of face-name associations after errorless and errorful learning: an fMRI study 
BMC Neuroscience  2013;14:30.
Background
Errorless learning has advantages over errorful learning. The erroneous items produced during errorful learning compete with correct items at retrieval resulting in decreased memory performance. This interference is associated with an increased demand on executive monitoring processes. Event-related functional magnetic resonance imaging (fMRI) was used to contrast errorless and errorful learning. Learning mode was manipulated by the number of distractors during learning of face-name associations: in errorless learning only the correct name was introduced. During errorful learning either one incorrect name or two incorrect names were additionally introduced in order to modulate the interference in recognition.
Results
The behavioural results showed an enhanced memory performance after errorless learning. The veridicality of recognition of the face-name associations was reflected in a left lateralized fronto-temporal-parietal network. The different learning modes were associated with modulations in left prefrontal and parietal regions.
Conclusions
Errorless learning enhances memory performance as compared to errorful learning and underpins the known advantages for errorless learning. During memory retrieval different networks are engaged for specific purposes: Recognition of face-name associations engaged a lateralized fronto-temporal-parietal network and executive monitoring processes of memory engaged the left prefrontal and parietal regions.
doi:10.1186/1471-2202-14-30
PMCID: PMC3599917  PMID: 23496800
Errorless; Errorful; Executive control; Face-name associations; Recognition; Parietal; Prefrontal
10.  Negative affect induced by derogatory verbal feedback modulates the neural signature of error detection 
The present study examines the influence of induced affective state on performance monitoring. The electroencephalogram was recorded while human participants engaged in a speeded choice-reaction time task commonly used to examine performance monitoring processes. Prior to the experiment, participants were randomly allocated to receive either encouraging or derogatory feedback during task execution. Feedback was based on each participant's reaction times. Affective state was assessed prior and after the experiment with a state questionnaire. Although participants of both feedback groups loaded high on items describing tiredness in the state questionnaire, only those with derogatory feedback loaded higher on negative state items and lower on positive state items after completion of the experiment. The error-related negativity (ERN) as an index of performance monitoring was increased after derogatory feedback; this difference was not seen at the beginning of the experiment. Negative state correlated significantly with ERN amplitude. The error positivity, a later component following errors, did not differ between feedback groups. This study provides further evidence that changes in affective state influence how we monitor ongoing behavior.
doi:10.1093/scan/nsp015
PMCID: PMC2728634  PMID: 19454619
event-related brain potentials (ERPs); error-related negativity (ERN); error positivity (Pe); performance monitoring; emotion; feedback
11.  Plasticity in the sensorimotor cortex induced by Music-supported therapy in stroke patients: a TMS study 
Playing a musical instrument demands the engagement of different neural systems. Recent studies about the musician's brain and musical training highlight that this activity requires the close interaction between motor and somatosensory systems. Moreover, neuroplastic changes have been reported in motor-related areas after short and long-term musical training. Because of its capacity to promote neuroplastic changes, music has been used in the context of stroke neurorehabilitation. The majority of patients suffering from a stroke have motor impairments, preventing them to live independently. Thus, there is an increasing demand for effective restorative interventions for neurological deficits. Music-supported Therapy (MST) has been recently developed to restore motor deficits. We report data of a selected sample of stroke patients who have been enrolled in a MST program (1 month intense music learning). Prior to and after the therapy, patients were evaluated with different behavioral motor tests. Transcranial Magnetic Stimulation (TMS) was applied to evaluate changes in the sensorimotor representations underlying the motor gains observed. Several parameters of excitability of the motor cortex were assessed as well as the cortical somatotopic representation of a muscle in the affected hand. Our results revealed that participants obtained significant motor improvements in the paretic hand and those changes were accompanied by changes in the excitability of the motor cortex. Thus, MST leads to neuroplastic changes in the motor cortex of stroke patients which may explain its efficacy.
doi:10.3389/fnhum.2013.00494
PMCID: PMC3759754  PMID: 24027507
stroke; music-supported therapy; music; plasticity; transcranial magnetic stimulation
12.  Use of cranial CT to identify a new infarct in patients with a transient ischemic attack 
Brain and Behavior  2012;2(4):377-381.
Research on infarct detection by noncontrast cranial computed tomography (CCT) in patients with transient ischemic attack (TIA) is sparse. However, the aims of this study are to determine the frequency of new infarcts in patients with TIA, to evaluate the independent predictors of infarct detection, and to investigate the association between a new infarct and early short-term risk of stroke during hospitalization. We prospectively evaluated 1533 consecutive patients (mean age, 75.3 ± 11 years; 54% female; mean National Institutes of Health Stroke Scale [NIHSS] score, 1.7 ± 2.9) with TIA who were admitted to hospital within 48 h of symptom onset. A new infarct was detected by CCT in 47 (3.1%) of the 1533 patients. During hospitalization, 17 patients suffered a stroke. Multivariate logistic regression analysis revealed the following independent predictors for infarct detection: NIHSS score ≥10 (odds ratio [OR], 4.8), time to CCT assessment >6 h (OR 2.2), and diabetes (OR 2.3). The evidence of a new infarct was not associated with the risk of stroke after TIA. The frequency of a new infarct in patients with TIA using CCT is low. The use of the CCT tool to predict the stroke risk during hospitalization in patients with TIA is found to be inappropriate. The estimated clinical predictors are easy to use and may help clinicians in the TIA work up.
doi:10.1002/brb3.59
PMCID: PMC3432960  PMID: 22950041
CCT; epidemiology; infarct; prognosis; stroke; TIA
13.  Cognitive Control in Russian–German Bilinguals 
Bilingual speakers are faced with the problem to keep their languages apart, but do so with interindividually varying success. Cognitive control abilities might be an important factor to explain such interindividual differences. Here we compare two late, balanced and highly proficient bilingual groups (mean age 24 years, L1 Russian, L2 German) which were established according to their language control abilities on a bilingual picture-naming task. One group had difficulties to remain in the instructed target language and switched unintentionally to the non-target language (“switchers”), whereas the other group rarely switched unintentionally (“non-switchers”). This group-specific behavior could not be explained by language background, socio-cultural, or demographic variables. Rather, the non-switchers also demonstrated a faster and better performance on four cognitive control tests (Tower of Hanoi, Ruff Figural Fluency Test, Divided Attention, Go/Nogo). Here, we focus on two additional executive function tasks, the Wisconsin Card Sorting Test (WCST) and the Flanker task requiring conflict monitoring and conflict resolution. Non-switchers outperformed switchers with regard to speed and accuracy, and were better at finding and applying the correct rules in the WCST. Similarly, in the Flanker task non-switchers performed faster and better on conflict trials and had a higher correction rate following an error. Event-related potential recordings furthermore revealed a smaller error-related negativity in the non-switchers, taken as evidence for a more efficient self-monitoring system. We conclude that bilingual language performance, in particular switching behavior, is related to performance on cognitive control tasks. Better cognitive control, including conflict monitoring, results in decreased unintentional switching.
doi:10.3389/fpsyg.2012.00115
PMCID: PMC3328798  PMID: 22529831
Flanker task; ERN; Wisconsin Card Sorting Test; conflict monitoring; inhibition; late bilinguals; cognitive control; executive function
14.  Self-Assessment of Individual Differences in Language Switching 
Language switching is omnipresent in bilingual individuals. In fact, the ability to switch languages (code switching) is a very fast, efficient, and flexible process that seems to be a fundamental aspect of bilingual language processing. In this study, we aimed to characterize psychometrically self-perceived individual differences in language switching and to create a reliable measure of this behavioral pattern by introducing a bilingual switching questionnaire. As a working hypothesis based on the previous literature about code switching, we decomposed language switching into four constructs: (i) L1 switching tendencies (the tendency to switch to L1; L1-switch); (ii) L2 switching tendencies (L2-switch); (iii) contextual switch, which indexes the frequency of switches usually triggered by a particular situation, topic, or environment; and (iv) unintended switch, which measures the lack of intention and awareness of the language switches. A total of 582 Spanish–Catalan bilingual university students were studied. Twelve items were selected (three for each construct). The correlation matrix was factor-analyzed using minimum rank factor analysis followed by oblique direct oblimin rotation. The overall proportion of common variance explained by the four extracted factors was 0.86. Finally, to assess the external validity of the individual differences scored with the new questionnaire, we evaluated the correlations between these measures and several psychometric (language proficiency) and behavioral measures related to cognitive and attentional control. The present study highlights the importance of evaluating individual differences in language switching using self-assessment instruments when studying the interface between cognitive control and bilingualism.
doi:10.3389/fpsyg.2011.00388
PMCID: PMC3254049  PMID: 22291668
bilingualism; natural language switching; cognitive control; psychometric
15.  Examining the McGurk illusion using high-field 7 Tesla functional MRI 
In natural communication speech perception is profoundly influenced by observable mouth movements. The additional visual information can greatly facilitate intelligibility but incongruent visual information may also lead to novel percepts that neither match the auditory nor the visual information as evidenced by the McGurk effect. Recent models of audiovisual (AV) speech perception accentuate the role of speech motor areas and the integrative brain sites in the vicinity of the superior temporal sulcus (STS) for speech perception. In this event-related 7 Tesla fMRI study we used three naturally spoken syllable pairs with matching AV information and one syllable pair designed to elicit the McGurk illusion. The data analysis focused on brain sites involved in processing and fusing of AV speech and engaged in the analysis of auditory and visual differences within AV presented speech. Successful fusion of AV speech is related to activity within the STS of both hemispheres. Our data supports and extends the audio-visual-motor model of speech perception by dissociating areas involved in perceptual fusion from areas more generally related to the processing of AV incongruence.
doi:10.3389/fnhum.2012.00095
PMCID: PMC3329794  PMID: 22529797
audio-visual integration; McGurk illusion; 7 Tesla; functional magnetic resonance imaging
16.  An fMRI Study on the Role of Serotonin in Reactive Aggression 
PLoS ONE  2011;6(11):e27668.
Reactive aggression after interpersonal provocation is a common behavior in humans. Little is known, however, about brain regions and neurotransmitters critical for the decision-making and affective processes involved in aggressive interactions. With the present fMRI study, we wanted to examine the role of serotonin in reactive aggression by means of an acute tryptophan depletion (ATD). Participants performed in a competitive reaction time task (Taylor Aggression Paradigm, TAP) which entitled the winner to punish the loser. The TAP seeks to elicit aggression by provocation. The study followed a double-blind between-subject design including only male participants. Behavioral data showed an aggression diminishing effect of ATD in low trait-aggressive participants, whereas no ATD effect was detected in high trait-aggressive participants. ATD also led to reduced insula activity during the decision phase, independently of the level of provocation. Whereas previous reports have suggested an inverse relationship between serotonin level and aggressive behavior with low levels of serotonin leading to higher aggression and vice versa, such a simple relationship is inconsistent with the current data.
doi:10.1371/journal.pone.0027668
PMCID: PMC3218006  PMID: 22110714
17.  Errorless and errorful learning modulated by transcranial direct current stimulation 
BMC Neuroscience  2011;12:72.
Background
Errorless learning is advantageous over trial and error learning (errorful learning) as errors are avoided during learning resulting in increased memory performance. Errorful learning challenges the executive control system of memory processes as the erroneous items compete with the correct items during retrieval. The left dorsolateral prefrontal cortex (DLPFC) is a core region involved in this executive control system. Transcranial direct current stimulation (tDCS) can modify the excitability of underlying brain functioning.
Results
In a single blinded tDCS study one group of young healthy participants received anodal and another group cathodal tDCS of the left DLPFC each compared to sham stimulation. Participants had to learn words in an errorless and an errorful manner using a word stem completion paradigm. The results showed that errorless compared to errorful learning had a profound effect on the memory performance in terms of quality. Anodal stimulation of the left DLPFC did not modulate the memory performance following errorless or errorful learning. By contrast, cathodal stimulation hampered memory performance after errorful learning compared to sham, whereas there was no modulation after errorless learning.
Conclusions
Concluding, the study further supports the advantages of errorless learning over errorful learning. Moreover, cathodal stimulation of the left DLPFC hampered memory performance following the conflict-inducing errorful learning as compared to no modulation after errorless learning emphasizing the importance of the left DLPFC in executive control of memory.
doi:10.1186/1471-2202-12-72
PMCID: PMC3154153  PMID: 21781298
18.  Neurophysiological Correlates of Laboratory-Induced Aggression in Young Men with and without a History of Violence 
PLoS ONE  2011;6(7):e22599.
In order to further understand the mechanisms involved in planning an aggressive act, we conducted an event-related potential (ERP) study of young men with and without a history of violence. Participants completed a competitive reaction time task (based on the Taylor aggression paradigm) against a virtual opponent. In "passive" blocks, participants were punished by the opponent when losing the trial but could not punish, when winning, whereas in "active" blocks, participants were able to punish the opponent when winning, but were not punished when losing. Participants selected punishment strength in a decision phase prior to each reaction time task and were informed whether they had won or lost in the outcome phase. Additionally, a flanker task was conducted to assess basic performance monitoring. Violent participants selected stronger punishments, especially in "active" blocks. During the decision phase, a frontal P200 was more pronounced for violent participants, whereas non-violent participants showed an enhanced frontal negativity around 300 ms. The P200 might reflect the decision to approach the opponent at a very early state, the latter negativity could reflect inhibition processes, leading to a more considerate reaction in non-violent participants. During the outcome phase, a Feedback-Related Negativity was seen in both groups. This effect was most pronounced when losing entailed a subsequent inability to retaliate. The groups did not differ in the flanker task, indicating intact basic performance monitoring. Our data suggest that the planning of an aggressive act is associated with distinct brain activity and that such activity is differentially represented in violent and non-violent individuals.
doi:10.1371/journal.pone.0022599
PMCID: PMC3141059  PMID: 21811638
19.  The Role of Executive Functions in the Control of Aggressive Behavior  
An extensive literature suggests a link between executive functions and aggressive behavior in humans, pointing mostly to an inverse relationship, i.e., increased tendencies toward aggression in individuals scoring low on executive function tests. This literature is limited, though, in terms of the groups studied and the measures of executive functions. In this paper, we present data from two studies addressing these issues. In a first behavioral study, we asked whether high trait aggressiveness is related to reduced executive functions. A sample of over 600 students performed in an extensive behavioral test battery including paradigms addressing executive functions such as the Eriksen Flanker task, Stroop task, n-back task, and Tower of London (TOL). High trait aggressive participants were found to have a significantly reduced latency score in the TOL, indicating more impulsive behavior compared to low trait aggressive participants. No other differences were detected. In an EEG-study, we assessed neural and behavioral correlates of error monitoring and response inhibition in participants who were characterized based on their laboratory-induced aggressive behavior in a competitive reaction time task. Participants who retaliated more in the aggression paradigm and had reduced frontal activity when being provoked did not, however, show any reduction in behavioral or neural correlates of executive control compared to the less aggressive participants. Our results question a strong relationship between aggression and executive functions at least for healthy, high-functioning people.
doi:10.3389/fpsyg.2011.00152
PMCID: PMC3130185  PMID: 21747775
reactive aggression; executive functions; Eriksen Flanker task; stop-signal task; Taylor aggression paradigm; Tower of London
20.  Neural Mechanisms of Anaphoric Reference Revealed by fMRI 
Pronouns are bound to their antecedents by matching syntactic and semantic information. The aim of this functional magnetic resonance imaging study was to localize syntactic and semantic information retrieval and integration during pronoun resolution. Especially we investigated their possible interaction with verbal working memory manipulated by distance between antecedent and pronoun. We disentangled biological and syntactic gender information using German sentences about persons (biological/syntactic gender) or things (syntactic gender) followed by congruent or incongruent pronouns. Increasing the distance between pronoun and antecedent resulted in a short and a long distance condition. Analysis revealed a language related network including inferior frontal regions bilaterally (integration), left anterior and posterior temporal regions (lexico-semantics and syntactic retrieval) and the anterior cingulate gyrus (conflict resolution) involved in pronoun resolution. Activities within the inferior frontal region were driven by Congruency (incongruent > congruent) and Distance (long > short). Temporal regions were sensitive to Distance and Congruency (but solely within long distant conditions). Furthermore, anterior temporal regions were sensitive to the antecedent type with an increased activity for person pronouns compared to thing pronouns. We suggest that activity modulations within these areas reflect the integration process of an appropriate antecedent which depends on the type of information that has to be retrieved (lexico-syntactic posterior temporal, lexico-semantics anterior temporal). It also depends on the overall syntactic and semantic complexity of long distant sentences. The results are interpreted in the context of the memory–unification-control model for sentence comprehension as proposed by Vosse and Kempen (2000), Hagoort (2005), and Snijders et al. (2009).
doi:10.3389/fpsyg.2011.00032
PMCID: PMC3110973  PMID: 21713189
language; pronoun; syntax; semantics; memory; unification; MUC; fMRI
21.  Individualized and Clinically Derived Stimuli Activate Limbic Structures in Depression: An fMRI Study 
PLoS ONE  2011;6(1):e15712.
Objectives
In the search for neurobiological correlates of depression, a major finding is hyperactivity in limbic-paralimbic regions. However, results so far have been inconsistent, and the stimuli used are often unspecific to depression. This study explored hemodynamic responses of the brain in patients with depression while processing individualized and clinically derived stimuli.
Methods
Eighteen unmedicated patients with recurrent major depressive disorder and 17 never-depressed control subjects took part in standardized clinical interviews from which individualized formulations of core interpersonal dysfunction were derived. In the patient group such formulations reflected core themes relating to the onset and maintenance of depression. In controls, formulations reflected a major source of distress. This material was thereafter presented to subjects during functional magnetic resonance imaging (fMRI) assessment.
Results
Increased hemodynamic responses in the anterior cingulate cortex, medial frontal gyrus, fusiform gyrus and occipital lobe were observed in both patients and controls when viewing individualized stimuli. Relative to control subjects, patients with depression showed increased hemodynamic responses in limbic-paralimbic and subcortical regions (e.g. amygdala and basal ganglia) but no signal decrease in prefrontal regions.
Conclusions
This study provides the first evidence that individualized stimuli derived from standardized clinical interviewing can lead to hemodynamic responses in regions associated with self-referential and emotional processing in both groups and limbic-paralimbic and subcortical structures in individuals with depression. Although the regions with increased responses in patients have been previously reported, this study enhances the ecological value of fMRI findings by applying stimuli that are of personal relevance to each individual's depression.
doi:10.1371/journal.pone.0015712
PMCID: PMC3026801  PMID: 21283580
22.  A Potential Role for a Genetic Variation of AKAP5 in Human Aggression and Anger Control 
The A-kinase-anchoring protein 5 (AKAP5), a post-synaptic multi-adaptor molecule that binds G-protein-coupled receptors and intracellular signaling molecules has been implicated in emotional processing in rodents, but its role in human emotion and behavior is up to now still not quite clear. Here, we report an association of individual differences in aggressive behavior and anger expression with a functional genetic polymorphism (Pro100Leu) in the human AKAP5 gene. Among a cohort of 527 young, healthy individuals, carriers of the less common Leu allele (15.6% allele frequency) scored significantly lower in the physical aggression domain of the Buss and Perry Aggression Questionnaire and higher in the anger control dimension of the state-trait anger expression inventory. In a functional magnetic resonance imaging experiment we could further demonstrate that AKAP5 Pro100Leu modulates the interaction of negative emotional processing and executive functions. In order to investigate implicit processes of anger control, we used the well-known flanker task to evoke processes of action monitoring and error processing and added task-irrelevant neutral or angry faces in the background of the flanker stimuli. In line with our predictions, Leu carriers showed increased activation of the anterior cingulate cortex (ACC) during emotional interference, which in turn predicted shorter reaction times and might be related to stronger control of emotional interference. Conversely, Pro homozygotes exhibited increased orbitofrontal cortex (OFC) activation during emotional interference, with no behavioral advantage. Immunohistochemistry revealed AKAP5 expression in post mortem human ACC and OFC. Our results suggest that AKAP5 Pro100Leu contributes to individual differences in human aggression and anger control. Further research is warranted to explore the detailed role of AKAP5 and its gene product in human emotion processing.
doi:10.3389/fnhum.2011.00175
PMCID: PMC3247758  PMID: 22232585
AKAP5; genetic; aggression; anger; fMRI
23.  When decisions of others matter to me: an electrophysiological analysis 
BMC Neuroscience  2010;11:86.
Background
Actions of others may have immediate consequences for oneself. We probed the neural responses associated with the observation of another person's action using event-related potentials in a modified gambling task. In this task a "performer" bet either a higher or lower number and could win or lose this amount. Three different groups of "observers" were also studied. The first (neutral) group simply observed the performer's action, which had no consequences for the observers. In the second (parallel) group, wins/losses of the performer were paralleled by similar wins and losses by the observer. In the third (reverse) group, wins of the performer led to a loss of the observer and vice versa.
Results
ERPs of the performers showed a mediofrontal feedback related negativity (FRN) to losses. The neutral and parallel observer groups did similarly show an FRN response to the performer's losses with a topography indistinguishable from that seen in the performers. In the reverse group, however, the FRN occurred for wins of the performer which translated to losses for the observer.
Conclusions
Taking into account previous experiments, we suggest that the FRN response in observers is driven by two evaluative processes (a) related to the benefit/loss for oneself and (b) related to the benefit/loss of another person.
doi:10.1186/1471-2202-11-86
PMCID: PMC2918625  PMID: 20670398
24.  Individual differences in control of language interference in late bilinguals are mainly related to general executive abilities 
Background
Recent research based on comparisons between bilinguals and monolinguals postulates that bilingualism enhances cognitive control functions, because the parallel activation of languages necessitates control of interference. In a novel approach we investigated two groups of bilinguals, distinguished by their susceptibility to cross-language interference, asking whether bilinguals with strong language control abilities ("non-switchers") have an advantage in executive functions (inhibition of irrelevant information, problem solving, planning efficiency, generative fluency and self-monitoring) compared to those bilinguals showing weaker language control abilities ("switchers").
Methods
29 late bilinguals (21 women) were evaluated using various cognitive control neuropsychological tests [e.g., Tower of Hanoi, Ruff Figural Fluency Task, Divided Attention, Go/noGo] tapping executive functions as well as four subtests of the Wechsler Adult Intelligence Scale. The analysis involved t-tests (two independent samples). Non-switchers (n = 16) were distinguished from switchers (n = 13) by their performance observed in a bilingual picture-naming task.
Results
The non-switcher group demonstrated a better performance on the Tower of Hanoi and Ruff Figural Fluency task, faster reaction time in a Go/noGo and Divided Attention task, and produced significantly fewer errors in the Tower of Hanoi, Go/noGo, and Divided Attention tasks when compared to the switchers. Non-switchers performed significantly better on two verbal subtests of the Wechsler Adult Intelligence Scale (Information and Similarity), but not on the Performance subtests (Picture Completion, Block Design).
Conclusions
The present results suggest that bilinguals with stronger language control have indeed a cognitive advantage in the administered tests involving executive functions, in particular inhibition, self-monitoring, problem solving, and generative fluency, and in two of the intelligence tests. What remains unclear is the direction of the relationship between executive functions and language control abilities.
doi:10.1186/1744-9081-6-5
PMCID: PMC2830994  PMID: 20180956
25.  Reward Networks in the Brain as Captured by Connectivity Measures 
Frontiers in Neuroscience  2009;3(3):350-362.
An assortment of human behaviors is thought to be driven by rewards including reinforcement learning, novelty processing, learning, decision making, economic choice, incentive motivation, and addiction. In each case the ventral tegmental area/ventral striatum (nucleus accumbens) (VTA–VS) system has been implicated as a key structure by functional imaging studies, mostly on the basis of standard, univariate analyses. Here we propose that standard functional magnetic resonance imaging analysis needs to be complemented by methods that take into account the differential connectivity of the VTA–VS system in the different behavioral contexts in order to describe reward based processes more appropriately. We first consider the wider network for reward processing as it emerged from animal experimentation. Subsequently, an example for a method to assess functional connectivity is given. Finally, we illustrate the usefulness of such analyses by examples regarding reward valuation, reward expectation and the role of reward in addiction.
doi:10.3389/neuro.01.034.2009
PMCID: PMC2796919  PMID: 20198152
reward; connectivity; learning; addiction; functional magnetic resonance imaging

Results 1-25 (51)