PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Cues of Maternal Condition Influence Offspring Selfishness 
PLoS ONE  2014;9(1):e87214.
The evolution of parent-offspring communication was mostly studied from the perspective of parents responding to begging signals conveying information about offspring condition. Parents should respond to begging because of the differential fitness returns obtained from their investment in offspring that differ in condition. For analogous reasons, offspring should adjust their behavior to cues/signals of parental condition: parents that differ in condition pay differential costs of care and, hence, should provide different amounts of food. In this study, we experimentally tested in the European earwig (Forficula auricularia) if cues of maternal condition affect offspring behavior in terms of sibling cannibalism. We experimentally manipulated female condition by providing them with different amounts of food, kept nymph condition constant, allowed for nymph exposure to chemical maternal cues over extended time, quantified nymph survival (deaths being due to cannibalism) and extracted and analyzed the females’ cuticular hydrocarbons (CHC). Nymph survival was significantly affected by chemical cues of maternal condition, and this effect depended on the timing of breeding. Cues of poor maternal condition enhanced nymph survival in early broods, but reduced nymph survival in late broods, and vice versa for cues of good condition. Furthermore, female condition affected the quantitative composition of their CHC profile which in turn predicted nymph survival patterns. Thus, earwig offspring are sensitive to chemical cues of maternal condition and nymphs from early and late broods show opposite reactions to the same chemical cues. Together with former evidence on maternal sensitivities to condition-dependent nymph chemical cues, our study shows context-dependent reciprocal information exchange about condition between earwig mothers and their offspring, potentially mediated by cuticular hydrocarbons.
doi:10.1371/journal.pone.0087214
PMCID: PMC3907508  PMID: 24498046
2.  Recognition in Ants: Social Origin Matters 
PLoS ONE  2011;6(5):e19347.
The ability of group members to discriminate against foreigners is a keystone in the evolution of sociality. In social insects, colony social structure (number of queens) is generally thought to influence abilities of resident workers to discriminate between nestmates and non-nestmates. However, whether social origin of introduced individuals has an effect on their acceptance in conspecific colonies remains poorly explored. Using egg-acceptance bioassays, we tested the influence of social origin of queen-laid eggs on their acceptance by foreign workers in the ant Formica selysi. We showed that workers from both single- and multiple-queen colonies discriminated against foreign eggs from single-queen colonies, whereas they surprisingly accepted foreign eggs from multiple-queen colonies. Chemical analyses then demonstrated that social origins of eggs and workers could be discriminated on the basis of their chemical profiles, a signal generally involved in nestmate discrimination. These findings provide the first evidence in social insects that social origins of eggs interfere with nestmate discrimination and are encoded by chemical signatures.
doi:10.1371/journal.pone.0019347
PMCID: PMC3087756  PMID: 21573235
3.  Sequential Learning of Pheromonal Cues Modulates Memory Consolidation in Trainer-Specific Associative Courtship Conditioning 
Current biology : CB  2005;15(3):194-206.
Summary
Background
Associative memory formation requires that animals choose predictors for experiences they need to remember. When an artificial odor is paired with an aversive experience, that odor becomes the predictor. In more natural settings, however, animals can have multiple salient experiences that need to be remembered and prioritized. The mechanisms by which animals deal with multiple experiences are incompletely understood.
Results
Here we show that Drosophila males can be trained to discriminate between different types of female pheromones; they suppress courtship specifically to the type of female that was associated with unsuccessful courtship. Such “trainer-specific” learning is mediated by hydrocarbon olfactory cues and modifies the male’s processing of those cues. Animals that are unable to use olfactory cues can still learn by using other sensory modalities, but memory in this case is not specific to the trainer female’s maturation state. Concurrent and serial presentation of different pheromones demonstrates that the ability to consolidate memory of pheromonal cues can be modified by the temporal order in which they appear.
Conclusion
Suppression of memory by new learning demonstrates that the dynamics of memory consolidation are subject to plasticity in Drosophila. This type of metaplasticity is essential for navigation of experience-rich natural environments.
doi:10.1016/j.cub.2005.01.035
PMCID: PMC2805828  PMID: 15694302
4.  Job switching in ants 
Reproductive division of labor is a defining characteristic of eusociality in insect societies. The task of reproduction is performed by the fertile males and queens of the colony, while the non-fertile female worker caste performs all other tasks related to colony upkeep, foraging and nest defence. Division of labor, or polyethism, within the worker caste is organized such that specific tasks are performed by discrete groups of individuals. Ordinarily, workers of one group will not participate in the tasks of other groups making the groups of workers behaviorally distinct. In some eusocial species, this has led to the evolution of a remarkable diversity of subcaste morphologies within the worker caste, and a division of labor amongst the subcastes. This caste polyethism is best represented in many species of ants where a smaller-bodied minor subcaste typically performs foraging duties while larger individuals of the major subcaste are tasked with nest defence. Recent work suggests that polyethism in the worker caste is influenced by an evolutionarily conserved, yet diversely regulated, gene called foraging (for), which encodes a cGMP-dependent protein kinase (PKG). Additionally, flexibility in the activity of this enzyme allows for workers from one task group to assist the workers of other task groups in times of need during the colony’s life.
In a recent article, Lucas and Sokolowski1 report that PKG mediates behavioral flexibility in the minor and major worker subcastes of the ant Pheidole pallidula. By changing the task-specific stimulus (a mealworm to induce foraging or alien intruders to induce defensive behavior) or pharmacologically manipulating PKG activity, they are able to alter the behavior of both subcastes. They also show differences in the spatial localization of the FOR protein in minor and major brains. Furthermore, manipulation of ppfor activity levels in the brain alters the behavior of both P. pallidula subcastes. The foraging gene is thus emerging as a major player in regulating the flexibility of responses to environmental change.
PMCID: PMC2881231  PMID: 20539773
foraging; defence; Pheidole pallidula; ants; kinase
5.  Generalization of courtship learning in Drosophila is mediated by cis-vaccenyl acetate 
Current biology : CB  2007;17(7):599-605.
Summary
Reproductive behavior in Drosophila has both stereotyped and plastic components that are driven by age- and sex-specific chemical cues. Males who unsuccessfully court virgin females subsequently avoid females that are of the same age as the trainer. In contrast, males trained with mature mated females associate volatile appetitive and aversive pheromonal cues and learn to suppress courtship of all females. Here we show that the volatile aversive pheromone that leads to generalized learning with mated females is (Z)-11-octadecenyl acetate (cis-vaccenyl acetate, cVA). cVA is a major component of the male cuticular hydrocarbon profile, but it is not found on virgin females. During copulation, cVA is transferred to the female in ejaculate along with sperm and peptides that decrease her sexual receptivity. When males sense cVA (either synthetic or from mated female or male extracts) in the context of female pheromone, they develop a generalized suppression of courtship. The effects of cVA on initial courtship of virgin females can be blocked by expression of tetanus toxin in Or65a, but not Or67d neurons, demonstrating that the aversive effects of this pheromone are mediated by a specific class of olfactory neuron. These findings suggest that transfer of cVA to females during mating may be part of the male’s strategy to suppress reproduction by competing males.
doi:10.1016/j.cub.2007.01.053
PMCID: PMC1913718  PMID: 17363250
Learning and memory; olfaction; Drosophila; pheromones; cis-vaccenyl acetate

Results 1-5 (5)